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Abstract

As the fastest-growing form of land use, urbanization drives profound environmental change that reshapes biodiversity.
Studies often characterize biodiversity patterns along urban—rural gradients with statistical models that include one or
more generic indices of urbanization. Such models may be useful for prediction, but they do not permit explicit tests of
causal hypotheses by which urbanization mediates ecological and evolutionary processes. Here, we show how a graphi-
cal causal modeling framework with directed acyclic graphs (DAGs) can be used to design clear conceptual models
and inform appropriate statistical analysis to better evaluate mechanistic hypotheses about the effects of urbanization
on biodiversity. We first introduce the basic structure of DAGs and illustrate their value with simulated datasets. We
then apply the framework to a case study on coat color variation in eastern gray squirrels (Sciurus carolinensis) along
an urbanization gradient in Syracuse, New York, USA. We show how statistical models ungrounded in causal assump-
tions are difficult to interpret and can lead to misleading conclusions about mechanisms in urban ecology and evolution.
In contrast, DAGs — by making causal assumptions transparent — help researchers identify appropriate control variables
for statistical models to estimate the effects of interest. When applied to our case study, statistical models informed by a
DAG revealed a surprising finding: although squirrel melanism was more prevalent in urban than rural populations, the
prevalence of melanism was constrained by components of environmental change common to cities, namely roads, forest
loss, and predator activity, contrary to expectations. Managing biodiversity in an increasingly urbanized world will require
a mechanistic understanding of how urbanization impacts biodiversity patterns; graphical causal models such as DAGs
can provide a powerful approach to do so.

Keywords Causal inference - Directed acyclic graphs - Eastern gray squirrel - Sciurus carolinensis - Urban ecology -
Urban evolution

Introduction

Urban areas represent the fastest growing land use type and
have profound effects on biodiversity (Aronson et al. 2014;
Ritchie and Roser 2018; Szabo et al. 2023). Urbanization
consists of a suite of abiotic and biotic changes driven by
high concentrations of humans and the physical environ-
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variation with urbanization (Winchell et al. 2016; Moll et al.
2019; Cosentino and Gibbs 2022; Santangelo et al. 2022).

Although the urban—rural gradient method has been help-
ful to describe spatial patterns of biodiversity, reliance on
univariate metrics of urbanization (e.g., impervious cover)
can be problematic when the research goal is to identify pro-
cesses underlying those patterns (Moll et al. 2019; Poisson
et al. 2024). Moreover, the use of statistical models with
multiple covariates (e.g., multiple linear regression) does
not guarantee valid causal inference. Interpreting parameter
estimates from statistical models as estimated causal effects
requires explicit assumptions about the causal relationships
among covariates in the model. In many studies those rela-
tionships are unstated, and covariates are included in mod-
els without regard to the causal connections between them
(McElreath 2020).

Understanding mechanisms by which urbanization gen-
erates patterns in ecology and evolution is complicated by
at least two factors. First, environmental change associated
with urbanization can affect biodiversity through multiple
causal pathways (Alberti et al. 2020). For example, road
networks can directly affect biodiversity through vehicular
collisions and noise pollution (Francis et al. 2012; Bennett
2017; Kok et al. 2023), but roads also have indirect effects
by contributing to habitat fragmentation and pollution run-
off, altering predator—prey dynamics, or facilitating the
spread of invasive species (Bowman et al. 2010; Bennett
2017; Mumma et al. 2019; Cerqueira et al. 2021). When a
univariate model is used to test how a biodiversity compo-
nent is related to road cover, the estimated effect combines
the direct and indirect effects. In some cases, these effects
can offset one another, obscuring different causal mecha-
nisms and leading to the conclusion that road cover has no
impact.

Second, many environmental conditions covary along
urbanization gradients — for example, road extent with hous-
ing density or light pollution — confounding the interpreta-
tion of the effect of any one axis of environmental variation
(Moll et al. 2019). Including multiple covariates in a regres-
sion model without a causal rationale can introduce bias.
For example, if light level mediates the effect of road cover
on biodiversity, including light as a covariate blocks part
of the causal pathway and underestimates the total effect
of road cover. Conversely, failing to include confounding
variables that affect both road cover and biodiversity can
lead to spurious associations. Statistical models designed
without regard to causal assumptions often yield parameter
estimates that conflate true causal effects with noncausal
confounding, rendering a mechanistic interpretation nearly
impossible.

One way to improve causal inference is to use graphi-
cal causal models, which have been shown effective across
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the sciences (e.g., Rohrer 2018; McElreath 2020; Arif and
MacNeil 2023; Arif and Massey 2023). Our goal is to show
how these models can be leveraged to strengthen inferences
about urbanization effects on biodiversity. Specifically, we
highlight one type of graphical causal model, the directed
acyclic graph (DAG), as an approach for specifying causal
assumptions about urban systems, including direct effects,
indirect effects via mediators, and confounding paths. We
first provide a basic introduction to DAGs in the context
of urban ecology and evolution, using simulated datasets
to show how the causal meaning of statistical estimates
depends on assumptions specified in the DAG. We then
apply the method to a case study in urban evolution, build-
ing a DAG to represent our causal assumptions and guide
statistical models to test hypotheses about urbanization
effects on coat color variation in eastern gray squirrels (Sci-
urus carolinensis).

Directed acyclic graphs for urbanization
effects

Directed acyclic graphs are visual diagrams representing
hypothesized causal relationships among variables. DAGs
help clarify causal assumptions and inform decisions about
study design and statistical analysis when the research goal
is to understand mechanisms driving observed patterns (Arif
and Massey 2023). DAGs consist of variables connected by
arrows, with each arrow representing a direct causal effect.
Importantly, causal pathways in DAGs are probabilistic: the
path X— Y means X influences the probability distribution
of Y, not that Y is a deterministic function of X.

Consider a hypothetical example, in which an urban ecol-
ogist is interested in the effects of housing density on bird
species diversity. We created an example DAG that might
represent a researcher’s causal assumptions related to the
research question (Fig. 1). The DAG shows housing den-
sity is expected to affect bird diversity via two pathways:
1) the direct effect Housing density — Species diversity,
perhaps representing the expectation that housing structures
can provide nesting habitat for some bird species, and 2)
the indirect effect Housing density— Green space — Spe-
cies diversity, which might reflect an ecologist’s expecta-
tion that housing structures reduce green space, while more
green space increases species diversity. Here, green space
functions as a mediator, transmitting an effect of housing
density on species diversity. The total effect of a variable
on an outcome is simply the sum of its direct and indirect
effects. Thus, based on our example DAG, the total effect
of housing density includes its direct effect plus the effect
mediated by green space.
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Fig. 1 Hypothetical directed acyclic graph (DAG) for a study of the
causal effects of housing density on bird species diversity. Boxes are
measured variables, and arrows represent assumed direct causal effects
between variable pairs. Panels include an unlabeled version (A) and
a labeled version (B) identifying the explanatory (green box) and
response (blue box) variables of interest, the causal pathways of inter-
est (green arrows), and important causal structures to identify when
estimating the causal pathways of interest. Estimating effects of hous-

Two additional causal structures are essential to iden-
tify in DAGs: confounders and colliders. In our example
DAG, the variables human population density and novel
food are on a backdoor path connecting housing density
and species diversity: Housing density «<— Human popula-
tion density — Novel food — Species diversity (Fig. 1). This
path might reflect an ecologist’s expectation that human
population density increases both housing density and novel
food (e.g., bird feeders), and that novel food increases spe-
cies diversity. A backdoor path is any non-causal pathway
involving a variable Z that causally affects an explanatory
variable X and the response variable Y (directly or indi-
rectly), having the general structure X«—Z— Y. In this case,
Z is a confounder because it affects both X and Y, which can
create a spurious association or mask a true causal relation-
ship between them. When considering the effect of housing
density on species diversity, human population density is a
confounder because it affects housing density directly and
species diversity indirectly via novel food.

Another important causal structure in the example DAG
involves the variable protected land: Green space — Pro-
tected land <« Species diversity (Fig. 1). Here, the amount
of protected land is influenced by green space and species
diversity, perhaps reflecting an ecologist’s expectation that
protected status is most likely to be prioritized for locations
with high species diversity or extensive green space. In this
example, protected land is a collider. A collider has the
form X— Z Y, where the collider Z is affected by X and Y.

The causal structures highlighted here are essential to
identify when using statistical models to estimate causal

B) confounder
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Housing > Species
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Green Protected
Space land
mediator collider

ing density on species diversity requires adjusting for the confounding
effect of human population density (orange box) that opens a backdoor
path (orange arrows). In contrast, protected land is a collider and does
not cause bias unless conditioned on. Estimation of the total effect of
housing density requires adjusting for the confounder only, whereas
estimation of the direct effect requires adjusting for the confounder and
the mediator (green space)

effects. To correctly estimate the effects of interest, research-
ers need to parameterize statistical models in a specific way
based on causal assumptions expressed in the DAG. For
example, to correctly estimate the direct and total effects
of housing density on species diversity, it is necessary to
adjust for the confounding pathway, typically by including
human population density or novel food (or both) as covari-
ates in a regression model. But care must be taken to decide
which covariates to include in a model. If the direct effect of
housing density was of interest, one needs to adjust not only
for the confounding effect of human population density, but
also the mediating effect of green space. In contrast, green
space should not be included as a covariate when estimating
the total effect of housing density, as it functions as a media-
tor of housing density and therefore contributes to the total
effect. Similarly, colliders do not cause bias by default and
should not be included as a covariate when they are on a
path from the explanatory variable to the response variable.
Including protected land in a regression model with housing
density would bias estimates of the housing density effects.

We used a data simulation exercise to explicitly demon-
strate how valid estimation of causal effects with statisti-
cal models depends on causal assumptions in a DAG. We
first used our example DAG (Fig. 1) to generate synthetic
datasets in R (R Core Team 2024). On their own, DAGs
do not imply a functional form of causal relationships
between variables (e.g., positive—negative, linear-nonlin-
ear, additive-interactive). For the simulation, we assumed
all relationships were linear and additive, and we defined
the direction and strength of each direct effect in the DAG
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as standardized regression coefficients (Table 1). We then
used the assumed effects to simulate data for 100 sampling
locations, with each variable standardized to mean=0 and
SD=1. All effects were probabilistic, such that the observed
value of each variable at each sampling location was a func-
tion of its causal ancestors plus a random error term drawn
from a normal distribution with mean=0 and SD=0.5. We
generated a total of 1000 simulated datasets.

For each simulated dataset, we fit statistical models to
estimate the effects of housing density on species diver-
sity. We used the dagitty package (Textor et al. 2016)
to identify appropriate adjustment sets to estimate the
direct and total effects of housing density on species
diversity. An adjustment set consists of the covariates
from a DAG that should be included in a statistical model
to produce unbiased estimates of a causal effect of interest
(Textor and Liskiewicz 2011). There are often multiple
possible adjustment sets for a given causal effect, and in
our example, the algorithm used by dagitty identified two
valid adjustment sets for the direct effect and two valid
adjustment sets for the total effect. For each simulated
dataset, we fit a regression model corresponding to each
adjustment set. For comparison, we fit two additional
models commonly used in the literature: 1) a univariate
model with housing density as the only predictor of spe-
cies diversity, and 2) a full model including all covariates.

The simulation results showed the total effect of housing
density on species diversity was accurately estimated when
adjusting for the confounding effect of human population
density, which required including either human population
density or novel food in the regression model (Fig. 2A, B).
The direct effect of housing density was accurately esti-
mated when adjusting for the same confounding pathway, as
well as the mediating effect of green space (Fig. 2C, D). In
contrast, the univariate model and full model both produced
biased estimates of the housing density effects (Fig. 2E,
F). The univariate model conflates the direct and indirect

Table 1 Standardized regression coefficients representing the direction
and magnitude of direct effects in our hypothetical DAG (Fig. 1) used
to simulate observed datasets

Explanatory variable Response variable Standard-
ized coef-
ficient

Human population density Novel food 0.9

Human population density Housing density 0.8

Housing density Green space -1.0

Housing density Species diversity 0.3

Novel food Species diversity 0.4

Green space Species diversity 0.8

Green space Protected land 1.0

Species diversity Protected land 0.8

@ Springer

effects of housing density with the noncausal associations
with human population density and novel food, leading to
a biased estimate that recovers neither of the true effects.
The full model approximated the direct effect of housing
density because it adjusts for the confounder (human popu-
lation density) and mediator (green space), but it underesti-
mated the direct effect because it also included the collider,
protected land. Overall, the data simulation illustrates how
the meaning of an estimated regression coefficient depends
on both the assumed causal relationships among variables
specified in a DAG and the specific parameterization of a
statistical model.

DAGs are useful to make causal assumptions clear and
to inform statistical analysis, but their use does not guaran-
tee valid causal inference. A critical assumption when using
a DAG is that it specifies the correct causal structure of a
system. In practice, researchers should apply prior knowl-
edge of their study system and consider whether non-trivial
causes are missing from a DAG, especially variables that
lie on confounding pathways between the explanatory and
response variables of interest. Importantly, confounding
effects should be included in DAGs even when they involve
unmeasurable variables, as there are approaches to address
unobserved confounders (Byrnes and Dee 2025).

At the same time, not all variables need to be included in
a DAG. Nearly all causal pathways can be decomposed into
more detailed steps (Shipley 2016), and, like any model,
DAGs are simplifications of reality. If a variable functions
solely as a mediator between two variables, it can often
be removed from the DAG without changing the implied
causal structure. Objections may be raised about omitted
variables, but we argue that debate about the structure of
DAGs is exactly what makes them so valuable. By forc-
ing researchers to state their causal assumptions explicitly,
DAGs promote transparency, constructive criticism, and
ideally stronger inferences.

Case study: applying DAGs to test causal
hypotheses about coat color variation in
eastern gray squirrels

Study species and hypothesized urbanization
effects

Eastern gray squirrels (Sciurus carolinensis) provide an
excellent study species to show how DAGs can be used
to help disentangle mechanisms by which urbanization
affects ecological and evolutionary outcomes. Eastern
gray squirrels are common across urban and rural land-
scapes in their native range of eastern North America.
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Fig. 2 Histograms of the estimated housing density coefficient from
regression models fit to 1000 simulated datasets generated from our
example DAG (Fig. 1, Table 1). Each panel (A-F) shows the distribu-
tion of the estimated housing density coefficient from a single regres-
sion model. Model parameterization is shown as a formula with species
diversity (Diversity) as a function of (~) housing density (Housing)

Individuals tend to have one of two coat color morphs:
gray or black (melanic) inherited in a simple Mendelian
fashion (McRobie et al. 2009). The prevalence of mel-
anism tends to be greater in cities than adjacent rural
forests (Gibbs et al. 2019; Cosentino and Gibbs 2022;
Cosentino et al. 2023). Multiple hypotheses have been
proposed about the ecological and evolutionary pro-
cesses maintaining these urban—rural clines (Cosentino
and Gibbs 2022; Cosentino et al. 2023). For example, the
melanic morph is visually more conspicuous than the gray
morph, such that predation may select for the more cryp-
tic gray morph (Proctor et al. 2025). Thus, both predator
activity and habitat context (e.g., sources of refuge from

and other covariates: human population density (Human), novel food
(Food), green space (Green), and protected land (Protected). Vertical
dashed lines show the true total and direct effects of housing density
on species diversity. Histogram colors distinguish models that produce
accurate estimates of the causal effect (green) from models that pro-
duce biased effects (orange)

predators, including trees and buildings) could alter the
prevalence of melanism. Additionally, road mortality has
been hypothesized to maintain clines in melanism, as
the melanic morph is more visible to humans and under-
represented among roadkill compared to the gray morph
(Gibbs et al. 2019; Proctor et al. 2025; Parlin et al. 2025).

Generating an initial DAG
We created a DAG to represent our causal assumptions
for how predator activity, components of habitat structure

that affect refuge availability (building cover, forest cover,
and forest fragmentation), and road cover affect spatial
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variation in the prevalence of melanism along an urban-
ization gradient (Fig. 3A). We expected melanism would
be greatest in areas of refugia from predators (high build-
ing cover, high forest cover, low forest fragmentation) and
high road cover, and lowest in areas of high predator activ-
ity. Critically, while these variables are all hypothesized
to affect the prevalence of melanism directly (Table 2),
they can covary along urban—rural gradients and confound
one another, highlighting the necessity of using a DAG
to identify potential confounds and appropriate adjust-
ments to estimate the effects of interest. For example, for-
est cover and forest fragmentation may directly affect the
prevalence of melanism by altering crypsis or availability
of refuge, but such habitat alteration could also indirectly
affect the prevalence of melanism by changing predator
activity (Bateman et al. 2012).

The foundation of our DAG was human population
density, operating on the assumption that environmental
change along urbanization gradients is ultimately driven
by people. We included a direct effect of human popula-
tion density on building cover (Glover and Simon 1975).
Because roads are the main way to access buildings, we
included a direct effect of building cover on road cover.
Buildings and roads were assumed to be direct causes
of impervious cover, and we included a direct effect
of human population density on impervious cover to

A) Initial DAG

Building

Population
density cover
|

N
s>

fragmentation

Impervious
cover

Predator
activity

Squirrel
melanism

Fig. 3 Directed acyclic graphs (DAG) representing our scientific
model, showing hypothesized causal relationships between variables
that could affect variation in melanism in eastern gray squirrels (Sci-
urus carolinensis) along urbanization gradients. An initial DAG was
generated representing our original hypotheses (A), and the DAG was
revised by dropping direct effects among explanatory variables that
were not empirically supported (B) (see Statistical analysis below).

@ Springer

represent other types of impervious surface that people
build (e.g., sidewalks, parking lots). We included a direct
effect of impervious cover on forest cover, as the cre-
ation of infrastructure requires tree removal (Liu et al.
2014). Forest cover extent is known to decrease forest
fragmentation (Fahrig 2003, 2017), so we included a
direct effect of forest cover on fragmentation. We also
included a direct effect of impervious cover on forest
fragmentation, as landscape elements like buildings and
roads cause discontinuities in forest cover, regardless of
their effects on the absolute amount of forest (Liu et al.
2014, 2019). Human population density was included as a
direct effect of forest cover and fragmentation to account
for other ways that people remove and fragment forested
areas (e.g., gardening and open parks). We included
direct effects of road cover, forest cover, and fragmenta-
tion on mammalian predator activity, as all three have
been linked to urban carnivore distribution and behavior
(Ordefiana et al. 2010; Bateman et al. 2012).

Although DAGs are useful for identifying and adjusting
for confounders, unobserved or unmeasured confounders
still create the potential for bias (Byrnes and Dee 2025). For
example, the high prevalence of melanism among squirrels
in some cities may be due in part to historical introductions
by people (i.e., propagule pressure) or reduced hunting pres-
sure in cities (Cosentino et al. 2023), variables that were not

B) Revised DAG

Population
density

Building
cover

Road
cover

Impervious
cover

Predator M Forest
activity

fragmentation

Squirrel
melanism

Arrows indicate hypothesized direct effects. Boxes represent measured
variables, and circles represent unobserved variables. “U” represents
unobserved effects of people on the prevalence of squirrel melanism,
including translocations and hunting pressure, which are known to
occur but remain unmeasured. Arrow color distinguishes pathways
that were estimable with measured variables (black) from pathways
that were not estimable due to unobserved processes (purple)
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Table 2 Environmental variables  Enyironmental — Rationale Hypoth- References Variable data source
hypothesized to affect the preva- variable esized
lence of melanism in eastern gray Direction
squirrels (Sciurus carolinensis) Human popula- The foundational driver of ) (Glover NASA’s CIESIN grid-
and data used to measure those . . s . ol . .
. tion density urbanization, increasing building and Simon  ded human population
variables and road cover, driving deforesta- 1975) dataset (30 arcsec;
tion and habitat fragmentation, Center For Interna-
and causing many unmeasured tional Earth Science
changes Information Network-
CIESIN-Columbia
University 2017)

Building cover  Alters habitat structure and avail-  (+) (Benson Cornell University
ability by reducing tree cover, 2013; Geospatial Informa-
but provides nesting sites, novel Parker tion Repository
microclimates, and shading that and Nilon
may be important for crypsis 2008)

Road cover Roadkill is a major driver of squir- (+) (McCleery Cover of roads with
rel mortality in urban contexts, et al. 2008; at least 30 mph speed
particularly roads with>30 mph Gibbs et limit from NYS GIS
speed limit. Melanic individu- al. 2019; Resources repository
als are more visible to drivers on Parlin et for public data (https:/
roads, and they have lower mortal- al. 2025; /data.gis.ny.gov)
ity rates from vehicular collisions Proctor et
than the gray morph al. 2025)

Forest cover Increases resource availability, () (Parker ESA WorldCover
including food, nests, and refuge and Nilon  dataset derived from
from predators 2008; Sentinel-1 and Senti-

Koprowski nel-2 satellite imagery
etal. 2016; (10 m resolution;
Merrick et Zanaga et al. 2022)

al. 2016)

Forest Restricts movements and may ) (Parker Measured as disjunct

fragmentation  affect fitness of color morphs and Nilon  core area density
differently by altering predator 2008; based on forest cover
activity and crypsis of each morph Koprowski from ESA World-
assuming fragmented areas are etal. 2016) Cover dataset derived
more visually open from Sentinel-1 and

Sentinel-2 satellite
imagery (Zanaga et
al. 2022)

Mammalian Mammalian predator activity ) (Gibbs et Quantified from cam-

predator activity alters predation risk as well as al. 2019; era trap detections
the landscape of fear. Differences Cosentino
in crypsis or behavior may cause and Gibbs
morphs to be affected differently 2022; Proc-
by predator activity tor et al.

2025)

possible to measure. Including unobserved variables like
these in a DAG can be important to make gaps in knowl-
edge explicit and identify confounding with other measured
variables. As such, we added an unobserved variable to our
DAG to represent unmeasured mechanisms by which peo-
ple could mediate coat color change (“U”). We included a
direct effect of human population density on U and a direct
effect of U on the prevalence of melanism (Fig. 3A). By
including this unobserved variable in the DAG (Fig. 3A),
we were able to identify how backdoor paths which include

U as a confounder could be closed by adjusting for human
population density (Table 3).

Study area and sampling

To parameterize the DAG, we used data on coat color varia-
tion in eastern gray squirrels across an urban—rural gradient
in Syracuse, New York, USA (43.0469° N, —76.1444° W).
Syracuse had an estimated human population of 146,000 (in
2022) and occurs in a humid continental climate (K&ppen
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Table 3 Posterior means, 95% credible intervals, and adjustment sets
for parameter estimates of direct effects, total effects, and univariate
models for predictors of coat color (proportion melanic) among east-
ern gray squirrels (Sciurus carolinensis). Separate models were fit to
estimate direct and total effects of predictor variables on proportion
melanic with appropriate adjustment covariates based on our directed
acyclic graph (Fig. 3B). Univariate estimates were based on models
with only the predictor variable and no adjustment covariates. Predic-
tor variables included human population density (Human), building
cover (Building), road cover (Road), impervious cover (Impervious),
forest cover (Forest), forest fragmentation (Frag), and mammalian
predator activity (Predator)

Direct Effects

Predictor Mean LCL UCL Adjustments

Human - - - -

Building 0.02 -0.29 0.32 Human, Road, Forest, Frag

Road -0.69 -1.01 —0.39 Human, Building, Forest,
Frag

Impervious - - - -

Forest 047 0.17 0.78 Human, Building, Road,
Frag

Frag 0.28 —0.07 0.64 Human, Impervious, For-
est, Predator

Predator -0.54 -0.83 —0.26 Human, Frag

Total Effects

Predictor Mean LCL UCL Adjustments

Human 042 0.18 0.67 -

Building -0.33 —0.54 -0.10 Human

Road -0.28 —0.54 —0.01 Building

Impervious —0.80 -1.42 -0.19 Human, Building, Road

Forest 0.16 —0.08 0.42 Impervious

Frag 041 0.07 0.74 Human, Impervious,
Forest

Predator —-0.54 —0.83 —0.26 Human, Frag

Univariate Estimates

Predictor Mean LCL UCL Adjustments

Human 042 018 0.67 -

Building -0.04 -0.22 0.15 -

Road -0.15 -0.34 0.02 -

Impervious -0.15 -035 0.04 -

Forest 020 -0.01 042 -

Frag 0.15 -0.05 035 -

Predator -0.14 -039 0.12 -

1936) with four distinct seasons, including hot summers and
cold winters. Tree cover ranges from 4.5% to 47% across
the city, averaging 27% (Nowak et al. 2016). The surround-
ing rural landscape is a mosaic of suburban areas, small
villages, agricultural lands, wetlands, and woodlands (Sup-
plemental Fig. S1).

We used camera traps and point count surveys to esti-
mate prevalence of color morphs at 49 sites across the
urban—rural gradient between September 2021 and October
2022 (Supplemental Fig. S1; Cosentino et al. 2023). Sites
were selected in urban greenspaces and rural woodlots with
mature deciduous trees, spanning the urban—rural gradient
(range=1.3-23.7 km from the city center) and separated by
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at least 1 km. A single camera trap (Browning Strikeforce
Pro XD) was fastened to a tree 30—50 cm off the ground at
each site and activated for 46-379 days (median=263 days),
and daily detection histories were generated for each color
morph. We also conducted 2—7 (median=35) visual point
count surveys at each site, recording the number of squirrels
seen of each color morph during a 3-min period. See Cosen-
tino et al. (2023) for detailed field methods.

Quantifying measured variables

All measured variables in the DAG other than predator
activity were measured via remotely sensed datasets with
the raster and exactextractr packages in R (Table 2; Baston
et al. 2022; Hijmans et al. 2023). We used a 300-m buffer to
summarize variables around each site to encompass a typi-
cal home range size of gray squirrels (<5 ha) (Koprowski et
al. 2016). Mammalian predator activity was indexed using
our camera trap imagery and calculated as the percentage
of camera trap days mammalian predators were detected
at each site (Bu et al. 2016). Predators detected by camera
traps included coyote (Canis latrans), gray fox (Urocyon
cinereoargenteus), red fox (Vulpes vulpes), fisher (Pekania
pennanti), domestic dog (Canis familiaris) and domestic
cat (Felis catus). Given our primary goal was to illustrate
the broader use of DAGs for causal inference, we limited
our analysis of predator effects to a general index of activity
across mammalian predator species, acknowledging that the
effects of mammalian predators on the prevalence of squir-
rel melanism may be species-specific, and that we are not
accounting for avian predation.

Statistical analyses

We tested hypotheses from our DAG (Fig. 3A) in two
stages. First, we used Bayesian generalized linear models
to estimate direct effects among measured variables other
than squirrel melanism, selecting appropriate distributions
for response variables and adjustment covariates based on
the DAG using the dagitty R package. For example, to esti-
mate the direct effect of building cover on impervious cover,
we assumed impervious cover follows a beta distribution
and modeled it as a function of building cover, along with
road cover as an adjustment. Models were fit with STAN via
the R package brms (Biirkner 2017) with noninformative
priors and standardized predictors. We generated a revised
DAG (Fig. 3B) that dropped direct effects when their pos-
terior distributions broadly overlapped 0 (Supplemental
Table S1). Next, we estimated the direct and total effects
of each variable on squirrel melanism using an integrated
hierarchical model combining point count and camera trap
data (Kéry and Royle 2020; Cosentino et al. 2023). This
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model included a process submodel to estimate morph-spe-
cific abundances and proportion melanic at each site, and a
detection submodel accounting for temperature effects on
activity. We estimated direct and total effects of measured
variables in our DAG on proportion melanic with linear
models, adjusting for DAG-informed covariates as needed.
We also fit univariate models with each measured variable
as a predictor of melanism to compare inferences with direct
and total effects. Hierarchical models were fit in JAGS via
the jagsUI R package (Plummer 2017; Kellner and Mer-
edith 2024) using mostly noninformative priors, but also
with informative priors for detection and abundance inter-
cepts based on prior knowledge. All models were run with
four chains and 4000 retained iterations after enough warm-
up or burn-in to reach convergence, which was confirmed
visually with traceplots and R-hat<1.01 (Gelman and Hill
2007). Posterior distributions were summarized with means
and 95% credible intervals. Details on statistical models are
provided in Supplemental Text S1.

Results and discussion
Human population density had a positive total effect on the

prevalence of squirrel melanism, with prevalence of mela-
nism greatest in more urbanized areas (Fig. 4, Table 3).
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Fig.4 Parameter estimates for
direct effects (green), total effects
(blue), and univariate models
(orange) for predictors of coat
color (proportion melanic) among
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While this aligns with previous studies showing a strong
cline along the urbanization gradient (Cosentino and Gibbs
2022; Cosentino et al. 2023), our DAG-informed analyses
provided multiple new insights into the potential mecha-
nisms maintaining the urban—rural cline. Remarkably, the
total effects of building cover, road cover, and impervious
cover (all metrics of human impact commonly used to rep-
resent “urbanization effects”) on the prevalence of mela-
nism were each negative despite squirrel melanism being
most prevalent in the city (Fig. 4, Table 3). These negative
total effects suggest the distribution of the melanic morph is
limited by various aspects of physical infrastructure, even
in more urban areas where melanic individuals are gener-
ally most prevalent. Considering the positive total effect
of human population density combined with negative total
effects of physical infrastructure on squirrel melanism, our
results suggest there remain unmeasured cause(s) repre-
sented by U in our DAG (Fig. 5) that play an important role
in maintaining the urban—rural cline by favoring melanics
in the city.

The statistical models informed by our DAG provided
novel insights into specific mechanisms maintaining the
urban—rural cline in melanism. For example, prior research
showed melanic individuals are underrepresented among
roadkill, relative to the gray morph—a finding attributed
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Fig.5 Direction of estimated direct

effects overlaid on our directed POPUIatlon

Building

acyclic graph. Blue solid lines density

indicate positive direct effects, red
solid lines indicate negative direct
effects, and black dotted lines
indicate effects for which the pos-
terior distribution of the parameter
estimate broadly overlapped zero.
Purple arrows show causal path-
ways which could not be estimated
due to unobserved processes.
Parameter estimates for effects on
squirrel melanism can be found in
Table 3, and parameter estimates
among measured environmental
variables can be found in Supple-
mental Table S1

Predator

activity

to humans more easily detecting and avoiding melan-
ics against gray asphalt when driving (Gibbs et al. 2019;
Parlin et al. 2025; Proctor et al. 2025). However, our find-
ings show road cover had strong negative direct and total
effects on the prevalence of melanism across the landscape
(Figs. 4, 5; Table 3). This suggests melanic individuals may
be avoiding areas with greater road cover, and thus previ-
ously observed underrepresentation of the melanic morph
among roadkill (Gibbs et al. 2019; Parlin et al. 2025) may
be due in part to habitat selection or behavioral avoidance
of roads by melanics, rather than being a sole function of
differences in visibility to people while driving. Isolating
the direct and total effects of road cover while considering
confounds (e.g., building cover) provided this new insight
into why melanics are underrepresented among roadkill and
contributes more evidence that within cities the prevalence
of squirrel melanism is constrained by high disturbance.
Another key finding from our models was the strong
negative direct effect of predator activity on the prevalence
of melanism (Figs. 4, 5; Table 3). A previous translocation
experiment showed survival is lower for melanic morph
than the gray morph in rural woodlands (Cosentino et al.
2023), and we know the melanic morph is generally more
conspicuous than the gray morph (Proctor et al. 2025). As
such, crypsis and predation pressure could contribute to
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patterns in melanism across the urban—rural gradient. This
combination of forces might help explain the direct negative
effect of predator activity and positive total effect of forest
fragmentation on melanism. Although we did not find strong
evidence of a direct effect of fragmentation on melanism,
our analyses support the idea that fragmentation mediates
the prevalence of melanism through its negative effect on
predator activity (Fig. 5, Supplemental Table S1), leading to
a positive total effect of fragmentation on melanism (Fig. 4,
Table 3). The melanic morph may benefit from a suppres-
sive effect of fragmentation on predator activity locally,
but it is important to note there was a strong positive direct
effect of human population density on predator activity
(Fig. 5, Supplemental Table S1), indicating predator activity
was greatest in the city where melanics are most common.
It is possible the melanic morph uses behavioral strategies
to mitigate their predation risk in densely populated areas
of the city where predator activity is greatest (Sarno et al.
2015; Gaynor et al. 2019; Engel et al. 2020). Such strategies
could include different activity patterns in space (including
vertically from ground to canopy) and time (diel patterns),
resulting in differing susceptibility to predation. Because
vertical niche shifts have been linked to competition and
predation, climate change, and urbanization (Rankin et
al. 2018; Basham and Scheffers 2020; Borden et al. 2021,
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Gamez and Harris 2022), future research should investigate
differences in spatial-temporal behavioral patterns between
color morphs and how it may impact the landscape of fear.
Additional analyses are also needed to examine the possibil-
ity that predator impacts on squirrel melanism vary among
predator species.

Despite these novel insights regarding mechanisms con-
tributing to the urban—rural cline in melanism, it is intriguing
that melanism is most prevalent in Syracuse yet constrained
by components of physical infrastructure that are wide-
spread in cities. This seemingly contradictory pattern may
be due in part to the interaction of historic and contempo-
rary forces, including ecological, evolutionary, and social
(Des Roches et al. 2021). For example, the melanic morph,
once common across the forested landscape, was extirpated
in many areas during the period of European colonialism
when extensive hunting accompanied deforestation and
logging in old growth forests near settlements (Robertson
1973; Cronon 1991; Benson 2013; Thompson et al. 2013).
Evidence suggests urban areas may have functioned as
refugia for eastern gray squirrels in general, including the
melanic morph (Benson 2013; Gibbs et al. 2019). Indeed,
changing attitudes about nature led to efforts to deliber-
ately introduce squirrels to cities starting in the late 1800s,
celebrating them as “our most loved” species in cities, and
establishing a social attitude of tolerance and even admi-
ration (Benson 2013). Despite well-known cases of intro-
ductions of the melanic morphs to cities (e.g., Washington
DC, Fischman et al. 2021), many squirrel translocations are
undocumented. We strongly suspect human-mediated trans-
port and bans on hunting in densely populated cities, includ-
ing Syracuse, have played important roles in contributing to
the maintenance of urban—rural clines in squirrel melanism.

Although such social forces can be difficult to measure,
our DAG illustrates it can be important to include unmea-
sured processes in a causal modeling framework. As just
one example, consider the direct negative effect of predator
activity on melanism inferred from our analyses. Based on
the DAG in Fig. 3B, the adjustment set we used to estimate
the direct effect of predator activity on melanism included
human population density and fragmentation. Adjusting
for human population density was needed in part to close
the backdoor path Predator activity<— Human population
density — U— Squirrel melanism. 1f the Human population
density — U— Squirrel melanism pathway was not included
in the DAG, the direct effect of predator activity on squirrel
melanism could be estimated without adjusting for human
population density. Doing so would lead to a biased estimate
of the direct effect of predator activity due to confounding
with the unmeasured variable, U. Indeed, when we estimate
the direct effect of predator activity on melanism without
adjusting for human population density, the estimated effect

is no longer negative (posterior mean=0.04, 95% CI=-0.22,
0.35). This positive bias is due to a positive effect of people
on predator activity and the residual positive association
between human population density and melanism operating
through the unobserved processes. Graphical causal mod-
els, such as DAGs, highlight one way in which unobserved
processes in urban systems — known or unknown — can be
explicitly considered when estimating effects of interest.

A striking demonstration of the value of graphical causal
models is seen when comparing estimated effects when
appropriately adjusted based on a DAG versus univariate
models commonly seen in urban ecology and evolution.
For example, had we relied solely on univariate models
to estimate the association between squirrel melanism and
common urbanization metrics, we might have erroneously
concluded that melanism is unrelated to any of the measured
variables in our DAG other than human population density,
as credible intervals for all univariate predictors other than
human density overlapped zero (Fig. 4; Table 3). This finding
raises significant concerns about using single-variable indi-
ces of urbanization. For example, impervious cover is com-
monly used to represent urbanization (Szulkin et al. 2020),
yet our univariate model with impervious cover resulted in
a posterior distribution that was largely negative, imply-
ing melanism is lowest in areas of high impervious cover
(Fig. 4; Table 3). Had we used impervious cover alone as an
index of urbanization, we might have concluded there was
no evidence for an urban—rural cline, or even weak evidence
for a reversed cline where melanism is greater in rural areas.
Indeed, our own previous studies using impervious surface
as a surrogate for urbanization likely underestimated true
clines in melanism (Gibbs et al. 2019; Cosentino and Gibbs
2022). If using single variables as proxies of urbanization
to describe biodiversity patterns along urbanization gradi-
ents cannot be avoided, our results suggest it is best to use
variables that are causal ancestors of environmental change
in cities, namely the density of people (Fig. 5). Distance to
city center or composite indices can also be used to describe
spatial patterns of biodiversity along urbanization gradients
(Moll et al. 2019; Alberti and Wang 2022), but we urge cau-
tion about using these variables for causal inference as they
often aggregate multiple underlying mechanisms.

Conclusion

Overall, our research demonstrates that urban impacts on
biodiversity are complex and involve a network of causal
pathways. Environmental variables commonly used to rep-
resent urbanization may at best describe coarse patterns with
respect to urbanization effects in ecology and evolution, but
they are nearly impossible to interpret mechanistically (Moll
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et al. 2019). We show that graphical causal models, such as
DAGs, can be an effective tool to clarify causal assumptions
and inform the design of statistical models to make infer-
ences about a variable’s mechanistic effects. Causal model-
ing frameworks present great opportunity for disentangling
the mechanisms at play in urban systems and understanding
the causal drivers of biodiversity within and among cities.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s11252-025-01841-0.
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