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Introduction

Urban areas represent the fastest growing land use type and 
have profound effects on biodiversity (Aronson et al. 2014; 
Ritchie and Roser 2018; Szabó et al. 2023). Urbanization 
consists of a suite of abiotic and biotic changes driven by 
high concentrations of humans and the physical environ-
ment they build (Ritchie and Roser 2018). The ecological 
and evolutionary consequences of urbanization are often 
studied using the urban–rural gradient approach, in which 
components of biodiversity are compared along a landscape-
scale sampling area from the urban core to rural habitats 
(McDonnell and Pickett 1990; McDonnell and Hahs 2008). 
The urban–rural gradient approach has been used to docu-
ment associations of population size, species distributions, 
community composition, and genetic and phenotypic trait 
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Abstract
As the fastest-growing form of land use, urbanization drives profound environmental change that reshapes biodiversity. 
Studies often characterize biodiversity patterns along urban–rural gradients with statistical models that include one or 
more generic indices of urbanization. Such models may be useful for prediction, but they do not permit explicit tests of 
causal hypotheses by which urbanization mediates ecological and evolutionary processes. Here, we show how a graphi-
cal causal modeling framework with directed acyclic graphs (DAGs) can be used to design clear conceptual models 
and inform appropriate statistical analysis to better evaluate mechanistic hypotheses about the effects of urbanization 
on biodiversity. We first introduce the basic structure of DAGs and illustrate their value with simulated datasets. We 
then apply the framework to a case study on coat color variation in eastern gray squirrels (Sciurus carolinensis) along 
an urbanization gradient in Syracuse, New York, USA. We show how statistical models ungrounded in causal assump-
tions are difficult to interpret and can lead to misleading conclusions about mechanisms in urban ecology and evolution. 
In contrast, DAGs – by making causal assumptions transparent – help researchers identify appropriate control variables 
for statistical models to estimate the effects of interest. When applied to our case study, statistical models informed by a 
DAG revealed a surprising finding: although squirrel melanism was more prevalent in urban than rural populations, the 
prevalence of melanism was constrained by components of environmental change common to cities, namely roads, forest 
loss, and predator activity, contrary to expectations. Managing biodiversity in an increasingly urbanized world will require 
a mechanistic understanding of how urbanization impacts biodiversity patterns; graphical causal models such as DAGs 
can provide a powerful approach to do so.
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variation with urbanization (Winchell et al. 2016; Moll et al. 
2019; Cosentino and Gibbs 2022; Santangelo et al. 2022).

Although the urban–rural gradient method has been help-
ful to describe spatial patterns of biodiversity, reliance on 
univariate metrics of urbanization (e.g., impervious cover) 
can be problematic when the research goal is to identify pro-
cesses underlying those patterns (Moll et al. 2019; Poisson 
et al. 2024). Moreover, the use of statistical models with 
multiple covariates (e.g., multiple linear regression) does 
not guarantee valid causal inference. Interpreting parameter 
estimates from statistical models as estimated causal effects 
requires explicit assumptions about the causal relationships 
among covariates in the model. In many studies those rela-
tionships are unstated, and covariates are included in mod-
els without regard to the causal connections between them 
(McElreath 2020).

Understanding mechanisms by which urbanization gen-
erates patterns in ecology and evolution is complicated by 
at least two factors. First, environmental change associated 
with urbanization can affect biodiversity through multiple 
causal pathways (Alberti et al. 2020). For example, road 
networks can directly affect biodiversity through vehicular 
collisions and noise pollution (Francis et al. 2012; Bennett 
2017; Kok et al. 2023), but roads also have indirect effects 
by contributing to habitat fragmentation and pollution run-
off, altering predator–prey dynamics, or facilitating the 
spread of invasive species (Bowman et al. 2010; Bennett 
2017; Mumma et al. 2019; Cerqueira et al. 2021). When a 
univariate model is used to test how a biodiversity compo-
nent is related to road cover, the estimated effect combines 
the direct and indirect effects. In some cases, these effects 
can offset one another, obscuring different causal mecha-
nisms and leading to the conclusion that road cover has no 
impact.

Second, many environmental conditions covary along 
urbanization gradients – for example, road extent with hous-
ing density or light pollution – confounding the interpreta-
tion of the effect of any one axis of environmental variation 
(Moll et al. 2019). Including multiple covariates in a regres-
sion model without a causal rationale can introduce bias. 
For example, if light level mediates the effect of road cover 
on biodiversity, including light as a covariate blocks part 
of the causal pathway and underestimates the total effect 
of road cover. Conversely, failing to include confounding 
variables that affect both road cover and biodiversity can 
lead to spurious associations. Statistical models designed 
without regard to causal assumptions often yield parameter 
estimates that conflate true causal effects with noncausal 
confounding, rendering a mechanistic interpretation nearly 
impossible.

One way to improve causal inference is to use graphi-
cal causal models, which have been shown effective across 

the sciences (e.g., Rohrer 2018; McElreath 2020; Arif and 
MacNeil 2023; Arif and Massey 2023). Our goal is to show 
how these models can be leveraged to strengthen inferences 
about urbanization effects on biodiversity. Specifically, we 
highlight one type of graphical causal model, the directed 
acyclic graph (DAG), as an approach for specifying causal 
assumptions about urban systems, including direct effects, 
indirect effects via mediators, and confounding paths. We 
first provide a basic introduction to DAGs in the context 
of urban ecology and evolution, using simulated datasets 
to show how the causal meaning of statistical estimates 
depends on assumptions specified in the DAG. We then 
apply the method to a case study in urban evolution, build-
ing a DAG to represent our causal assumptions and guide 
statistical models to test hypotheses about urbanization 
effects on coat color variation in eastern gray squirrels (Sci-
urus carolinensis).

Directed acyclic graphs for urbanization 
effects

Directed acyclic graphs are visual diagrams representing 
hypothesized causal relationships among variables. DAGs 
help clarify causal assumptions and inform decisions about 
study design and statistical analysis when the research goal 
is to understand mechanisms driving observed patterns (Arif 
and Massey 2023). DAGs consist of variables connected by 
arrows, with each arrow representing a direct causal effect. 
Importantly, causal pathways in DAGs are probabilistic: the 
path X → Y means X influences the probability distribution 
of Y, not that Y is a deterministic function of X.

Consider a hypothetical example, in which an urban ecol-
ogist is interested in the effects of housing density on bird 
species diversity. We created an example DAG that might 
represent a researcher’s causal assumptions related to the 
research question (Fig. 1). The DAG shows housing den-
sity is expected to affect bird diversity via two pathways: 
1) the direct effect Housing density → Species diversity, 
perhaps representing the expectation that housing structures 
can provide nesting habitat for some bird species, and 2) 
the indirect effect Housing density → Green space → Spe-
cies diversity, which might reflect an ecologist’s expecta-
tion that housing structures reduce green space, while more 
green space increases species diversity. Here, green space 
functions as a mediator, transmitting an effect of housing 
density on species diversity. The total effect of a variable 
on an outcome is simply the sum of its direct and indirect 
effects. Thus, based on our example DAG, the total effect 
of housing density includes its direct effect plus the effect 
mediated by green space.
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Two additional causal structures are essential to iden-
tify in DAGs: confounders and colliders. In our example 
DAG, the variables human population density and novel 
food are on a backdoor path connecting housing density 
and species diversity: Housing density ← Human popula-
tion density → Novel food → Species diversity (Fig. 1). This 
path might reflect an ecologist’s expectation that human 
population density increases both housing density and novel 
food (e.g., bird feeders), and that novel food increases spe-
cies diversity. A backdoor path is any non-causal pathway 
involving a variable Z that causally affects an explanatory 
variable X and the response variable Y (directly or indi-
rectly), having the general structure X ← Z → Y. In this case, 
Z is a confounder because it affects both X and Y, which can 
create a spurious association or mask a true causal relation-
ship between them. When considering the effect of housing 
density on species diversity, human population density is a 
confounder because it affects housing density directly and 
species diversity indirectly via novel food.

Another important causal structure in the example DAG 
involves the variable protected land: Green space → Pro-
tected land ← Species diversity (Fig. 1). Here, the amount 
of protected land is influenced by green space and species 
diversity, perhaps reflecting an ecologist’s expectation that 
protected status is most likely to be prioritized for locations 
with high species diversity or extensive green space. In this 
example, protected land is a collider. A collider has the 
form X → Z ← Y, where the collider Z is affected by X and Y.

The causal structures highlighted here are essential to 
identify when using statistical models to estimate causal 

effects. To correctly estimate the effects of interest, research-
ers need to parameterize statistical models in a specific way 
based on causal assumptions expressed in the DAG. For 
example, to correctly estimate the direct and total effects 
of housing density on species diversity, it is necessary to 
adjust for the confounding pathway, typically by including 
human population density or novel food (or both) as covari-
ates in a regression model. But care must be taken to decide 
which covariates to include in a model. If the direct effect of 
housing density was of interest, one needs to adjust not only 
for the confounding effect of human population density, but 
also the mediating effect of green space. In contrast, green 
space should not be included as a covariate when estimating 
the total effect of housing density, as it functions as a media-
tor of housing density and therefore contributes to the total 
effect. Similarly, colliders do not cause bias by default and 
should not be included as a covariate when they are on a 
path from the explanatory variable to the response variable. 
Including protected land in a regression model with housing 
density would bias estimates of the housing density effects.

We used a data simulation exercise to explicitly demon-
strate how valid estimation of causal effects with statisti-
cal models depends on causal assumptions in a DAG. We 
first used our example DAG (Fig. 1) to generate synthetic 
datasets in R (R Core Team 2024). On their own, DAGs 
do not imply a functional form of causal relationships 
between variables (e.g., positive–negative, linear-nonlin-
ear, additive-interactive). For the simulation, we assumed 
all relationships were linear and additive, and we defined 
the direction and strength of each direct effect in the DAG 

Fig. 1  Hypothetical directed acyclic graph (DAG) for a study of the 
causal effects of housing density on bird species diversity. Boxes are 
measured variables, and arrows represent assumed direct causal effects 
between variable pairs. Panels include an unlabeled version (A) and 
a labeled version (B) identifying the explanatory (green box) and 
response (blue box) variables of interest, the causal pathways of inter-
est (green arrows), and important causal structures to identify when 
estimating the causal pathways of interest. Estimating effects of hous-

ing density on species diversity requires adjusting for the confounding 
effect of human population density (orange box) that opens a backdoor 
path (orange arrows). In contrast, protected land is a collider and does 
not cause bias unless conditioned on. Estimation of the total effect of 
housing density requires adjusting for the confounder only, whereas 
estimation of the direct effect requires adjusting for the confounder and 
the mediator (green space)
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effects of housing density with the noncausal associations 
with human population density and novel food, leading to 
a biased estimate that recovers neither of the true effects. 
The full model approximated the direct effect of housing 
density because it adjusts for the confounder (human popu-
lation density) and mediator (green space), but it underesti-
mated the direct effect because it also included the collider, 
protected land. Overall, the data simulation illustrates how 
the meaning of an estimated regression coefficient depends 
on both the assumed causal relationships among variables 
specified in a DAG and the specific parameterization of a 
statistical model.

DAGs are useful to make causal assumptions clear and 
to inform statistical analysis, but their use does not guaran-
tee valid causal inference. A critical assumption when using 
a DAG is that it specifies the correct causal structure of a 
system. In practice, researchers should apply prior knowl-
edge of their study system and consider whether non-trivial 
causes are missing from a DAG, especially variables that 
lie on confounding pathways between the explanatory and 
response variables of interest. Importantly, confounding 
effects should be included in DAGs even when they involve 
unmeasurable variables, as there are approaches to address 
unobserved confounders (Byrnes and Dee 2025).

At the same time, not all variables need to be included in 
a DAG. Nearly all causal pathways can be decomposed into 
more detailed steps (Shipley 2016), and, like any model, 
DAGs are simplifications of reality. If a variable functions 
solely as a mediator between two variables, it can often 
be removed from the DAG without changing the implied 
causal structure. Objections may be raised about omitted 
variables, but we argue that debate about the structure of 
DAGs is exactly what makes them so valuable. By forc-
ing researchers to state their causal assumptions explicitly, 
DAGs promote transparency, constructive criticism, and 
ideally stronger inferences.

Case study: applying DAGs to test causal 
hypotheses about coat color variation in 
eastern gray squirrels

Study species and hypothesized urbanization 
effects

Eastern gray squirrels (Sciurus carolinensis) provide an 
excellent study species to show how DAGs can be used 
to help disentangle mechanisms by which urbanization 
affects ecological and evolutionary outcomes. Eastern 
gray squirrels are common across urban and rural land-
scapes in their native range of eastern North America. 

as standardized regression coefficients (Table 1). We then 
used the assumed effects to simulate data for 100 sampling 
locations, with each variable standardized to mean = 0 and 
SD = 1. All effects were probabilistic, such that the observed 
value of each variable at each sampling location was a func-
tion of its causal ancestors plus a random error term drawn 
from a normal distribution with mean = 0 and SD = 0.5. We 
generated a total of 1000 simulated datasets.

For each simulated dataset, we fit statistical models to 
estimate the effects of housing density on species diver-
sity. We used the dagitty package (Textor et al. 2016) 
to identify appropriate adjustment sets to estimate the 
direct and total effects of housing density on species 
diversity. An adjustment set consists of the covariates 
from a DAG that should be included in a statistical model 
to produce unbiased estimates of a causal effect of interest 
(Textor and Liśkiewicz 2011). There are often multiple 
possible adjustment sets for a given causal effect, and in 
our example, the algorithm used by dagitty identified two 
valid adjustment sets for the direct effect and two valid 
adjustment sets for the total effect. For each simulated 
dataset, we fit a regression model corresponding to each 
adjustment set. For comparison, we fit two additional 
models commonly used in the literature: 1) a univariate 
model with housing density as the only predictor of spe-
cies diversity, and 2) a full model including all covariates.

The simulation results showed the total effect of housing 
density on species diversity was accurately estimated when 
adjusting for the confounding effect of human population 
density, which required including either human population 
density or novel food in the regression model (Fig. 2A, B). 
The direct effect of housing density was accurately esti-
mated when adjusting for the same confounding pathway, as 
well as the mediating effect of green space (Fig. 2C, D). In 
contrast, the univariate model and full model both produced 
biased estimates of the housing density effects (Fig.  2E, 
F). The univariate model conflates the direct and indirect 

Table 1  Standardized regression coefficients representing the direction 
and magnitude of direct effects in our hypothetical DAG (Fig. 1) used 
to simulate observed datasets
Explanatory variable Response variable Standard-

ized coef-
ficient

Human population density Novel food 0.9
Human population density Housing density 0.8
Housing density Green space −1.0
Housing density Species diversity 0.3
Novel food Species diversity 0.4
Green space Species diversity 0.8
Green space Protected land 1.0
Species diversity Protected land 0.8
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predators, including trees and buildings) could alter the 
prevalence of melanism. Additionally, road mortality has 
been hypothesized to maintain clines in melanism, as 
the melanic morph is more visible to humans and under-
represented among roadkill compared to the gray morph 
(Gibbs et al. 2019; Proctor et al. 2025; Parlin et al. 2025).

Generating an initial DAG

We created a DAG to represent our causal assumptions 
for how predator activity, components of habitat structure 
that affect refuge availability (building cover, forest cover, 
and forest fragmentation), and road cover affect spatial 

Individuals tend to have one of two coat color morphs: 
gray or black (melanic) inherited in a simple Mendelian 
fashion (McRobie et al. 2009). The prevalence of mel-
anism tends to be greater in cities than adjacent rural 
forests (Gibbs et al. 2019; Cosentino and Gibbs 2022; 
Cosentino et al. 2023). Multiple hypotheses have been 
proposed about the ecological and evolutionary pro-
cesses maintaining these urban–rural clines (Cosentino 
and Gibbs 2022; Cosentino et al. 2023). For example, the 
melanic morph is visually more conspicuous than the gray 
morph, such that predation may select for the more cryp-
tic gray morph (Proctor et al. 2025). Thus, both predator 
activity and habitat context (e.g., sources of refuge from 
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Fig. 2  Histograms of the estimated housing density coefficient from 
regression models fit to 1000 simulated datasets generated from our 
example DAG (Fig. 1, Table 1). Each panel (A-F) shows the distribu-
tion of the estimated housing density coefficient from a single regres-
sion model. Model parameterization is shown as a formula with species 
diversity (Diversity) as a function of (~) housing density (Housing) 

and other covariates: human population density (Human), novel food 
(Food), green space (Green), and protected land (Protected). Vertical 
dashed lines show the true total and direct effects of housing density 
on species diversity. Histogram colors distinguish models that produce 
accurate estimates of the causal effect (green) from models that pro-
duce biased effects (orange)
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represent other types of impervious surface that people 
build (e.g., sidewalks, parking lots). We included a direct 
effect of impervious cover on forest cover, as the cre-
ation of infrastructure requires tree removal (Liu et al. 
2014). Forest cover extent is known to decrease forest 
fragmentation (Fahrig 2003, 2017), so we included a 
direct effect of forest cover on fragmentation. We also 
included a direct effect of impervious cover on forest 
fragmentation, as landscape elements like buildings and 
roads cause discontinuities in forest cover, regardless of 
their effects on the absolute amount of forest (Liu et al. 
2014, 2019). Human population density was included as a 
direct effect of forest cover and fragmentation to account 
for other ways that people remove and fragment forested 
areas (e.g., gardening and open parks). We included 
direct effects of road cover, forest cover, and fragmenta-
tion on mammalian predator activity, as all three have 
been linked to urban carnivore distribution and behavior 
(Ordeñana et al. 2010; Bateman et al. 2012).

Although DAGs are useful for identifying and adjusting 
for confounders, unobserved or unmeasured confounders 
still create the potential for bias (Byrnes and Dee 2025). For 
example, the high prevalence of melanism among squirrels 
in some cities may be due in part to historical introductions 
by people (i.e., propagule pressure) or reduced hunting pres-
sure in cities (Cosentino et al. 2023), variables that were not 

variation in the prevalence of melanism along an urban-
ization gradient (Fig. 3A). We expected melanism would 
be greatest in areas of refugia from predators (high build-
ing cover, high forest cover, low forest fragmentation) and 
high road cover, and lowest in areas of high predator activ-
ity. Critically, while these variables are all hypothesized 
to affect the prevalence of melanism directly (Table  2), 
they can covary along urban–rural gradients and confound 
one another, highlighting the necessity of using a DAG 
to identify potential confounds and appropriate adjust-
ments to estimate the effects of interest. For example, for-
est cover and forest fragmentation may directly affect the 
prevalence of melanism by altering crypsis or availability 
of refuge, but such habitat alteration could also indirectly 
affect the prevalence of melanism by changing predator 
activity (Bateman et al. 2012).

The foundation of our DAG was human population 
density, operating on the assumption that environmental 
change along urbanization gradients is ultimately driven 
by people. We included a direct effect of human popula-
tion density on building cover (Glover and Simon 1975). 
Because roads are the main way to access buildings, we 
included a direct effect of building cover on road cover. 
Buildings and roads were assumed to be direct causes 
of impervious cover, and we included a direct effect 
of human population density on impervious cover to 

Fig.  3  Directed acyclic graphs (DAG) representing our scientific 
model, showing hypothesized causal relationships between variables 
that could affect variation in melanism in eastern gray squirrels (Sci-
urus carolinensis) along urbanization gradients. An initial DAG was 
generated representing our original hypotheses (A), and the DAG was 
revised by dropping direct effects among explanatory variables that 
were not empirically supported (B) (see Statistical analysis below). 

Arrows indicate hypothesized direct effects. Boxes represent measured 
variables, and circles represent unobserved variables. “U” represents 
unobserved effects of people on the prevalence of squirrel melanism, 
including translocations and hunting pressure, which are known to 
occur but remain unmeasured. Arrow color distinguishes pathways 
that were estimable with measured variables (black) from pathways 
that were not estimable due to unobserved processes (purple)
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U as a confounder could be closed by adjusting for human 
population density (Table 3).

Study area and sampling

To parameterize the DAG, we used data on coat color varia-
tion in eastern gray squirrels across an urban–rural gradient 
in Syracuse, New York, USA (43.0469° N, −76.1444° W). 
Syracuse had an estimated human population of 146,000 (in 
2022) and occurs in a humid continental climate (Köppen 

possible to measure. Including unobserved variables like 
these in a DAG can be important to make gaps in knowl-
edge explicit and identify confounding with other measured 
variables. As such, we added an unobserved variable to our 
DAG to represent unmeasured mechanisms by which peo-
ple could mediate coat color change (“U”). We included a 
direct effect of human population density on U and a direct 
effect of U on the prevalence of melanism (Fig.  3A). By 
including this unobserved variable in the DAG (Fig. 3A), 
we were able to identify how backdoor paths which include 

Environmental 
variable

Rationale Hypoth-
esized 
Direction

References Variable data source

Human popula-
tion density

The foundational driver of 
urbanization, increasing building 
and road cover, driving deforesta-
tion and habitat fragmentation, 
and causing many unmeasured 
changes

(+) (Glover 
and Simon 
1975)

NASA’s CIESIN grid-
ded human population 
dataset (30 arcsec; 
Center For Interna-
tional Earth Science 
Information Network-
CIESIN-Columbia 
University 2017)

Building cover Alters habitat structure and avail-
ability by reducing tree cover, 
but provides nesting sites, novel 
microclimates, and shading that 
may be important for crypsis

(+) (Benson 
2013; 
Parker 
and Nilon 
2008)

Cornell University 
Geospatial Informa-
tion Repository

Road cover Roadkill is a major driver of squir-
rel mortality in urban contexts, 
particularly roads with ≥ 30 mph 
speed limit. Melanic individu-
als are more visible to drivers on 
roads, and they have lower mortal-
ity rates from vehicular collisions 
than the gray morph

(+) (McCleery 
et al. 2008; 
Gibbs et 
al. 2019; 
Parlin et 
al. 2025; 
Proctor et 
al. 2025)

Cover of roads with 
at least 30 mph speed 
limit from NYS GIS 
Resources repository 
for public data ​(​​​h​t​t​p​s​:​/​
/​d​a​t​a​.​g​i​s​.​n​y​.​g​o​v​​​​​)​​

Forest cover Increases resource availability, 
including food, nests, and refuge 
from predators

(+) (Parker 
and Nilon 
2008; 
Koprowski 
et al. 2016; 
Merrick et 
al. 2016)

ESA WorldCover 
dataset derived from 
Sentinel-1 and Senti-
nel-2 satellite imagery 
(10 m resolution; 
Zanaga et al. 2022)

Forest 
fragmentation

Restricts movements and may 
affect fitness of color morphs 
differently by altering predator 
activity and crypsis of each morph 
assuming fragmented areas are 
more visually open

(-) (Parker 
and Nilon 
2008; 
Koprowski 
et al. 2016)

Measured as disjunct 
core area density 
based on forest cover 
from ESA World-
Cover dataset derived 
from Sentinel-1 and 
Sentinel-2 satellite 
imagery (Zanaga et 
al. 2022)

Mammalian 
predator activity

Mammalian predator activity 
alters predation risk as well as 
the landscape of fear. Differences 
in crypsis or behavior may cause 
morphs to be affected differently 
by predator activity

(-) (Gibbs et 
al. 2019; 
Cosentino 
and Gibbs 
2022; Proc-
tor et al. 
2025)

Quantified from cam-
era trap detections

Table 2  Environmental variables 
hypothesized to affect the preva-
lence of melanism in eastern gray 
squirrels (Sciurus carolinensis) 
and data used to measure those 
variables
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at least 1 km. A single camera trap (Browning Strikeforce 
Pro XD) was fastened to a tree 30–50 cm off the ground at 
each site and activated for 46–379 days (median = 263 days), 
and daily detection histories were generated for each color 
morph. We also conducted 2–7 (median = 5) visual point 
count surveys at each site, recording the number of squirrels 
seen of each color morph during a 3-min period. See Cosen-
tino et al. (2023) for detailed field methods.

Quantifying measured variables

All measured variables in the DAG other than predator 
activity were measured via remotely sensed datasets with 
the raster and exactextractr packages in R (Table 2; Baston 
et al. 2022; Hijmans et al. 2023). We used a 300-m buffer to 
summarize variables around each site to encompass a typi-
cal home range size of gray squirrels (< 5 ha) (Koprowski et 
al. 2016). Mammalian predator activity was indexed using 
our camera trap imagery and calculated as the percentage 
of camera trap days mammalian predators were detected 
at each site (Bu et al. 2016). Predators detected by camera 
traps included coyote (Canis latrans), gray fox (Urocyon 
cinereoargenteus), red fox (Vulpes vulpes), fisher (Pekania 
pennanti), domestic dog (Canis familiaris) and domestic 
cat (Felis catus). Given our primary goal was to illustrate 
the broader use of DAGs for causal inference, we limited 
our analysis of predator effects to a general index of activity 
across mammalian predator species, acknowledging that the 
effects of mammalian predators on the prevalence of squir-
rel melanism may be species-specific, and that we are not 
accounting for avian predation.

Statistical analyses

We tested hypotheses from our DAG (Fig.  3A) in two 
stages. First, we used Bayesian generalized linear models 
to estimate direct effects among measured variables other 
than squirrel melanism, selecting appropriate distributions 
for response variables and adjustment covariates based on 
the DAG using the dagitty R package. For example, to esti-
mate the direct effect of building cover on impervious cover, 
we assumed impervious cover follows a beta distribution 
and modeled it as a function of building cover, along with 
road cover as an adjustment. Models were fit with STAN via 
the R package brms (Bürkner 2017) with noninformative 
priors and standardized predictors. We generated a revised 
DAG (Fig. 3B) that dropped direct effects when their pos-
terior distributions broadly overlapped 0 (Supplemental 
Table S1). Next, we estimated the direct and total effects 
of each variable on squirrel melanism using an integrated 
hierarchical model combining point count and camera trap 
data (Kéry and Royle 2020; Cosentino et al. 2023). This 

1936) with four distinct seasons, including hot summers and 
cold winters. Tree cover ranges from 4.5% to 47% across 
the city, averaging 27% (Nowak et al. 2016). The surround-
ing rural landscape is a mosaic of suburban areas, small 
villages, agricultural lands, wetlands, and woodlands (Sup-
plemental Fig. S1).

We used camera traps and point count surveys to esti-
mate prevalence of color morphs at 49 sites across the 
urban–rural gradient between September 2021 and October 
2022 (Supplemental Fig. S1; Cosentino et al. 2023). Sites 
were selected in urban greenspaces and rural woodlots with 
mature deciduous trees, spanning the urban–rural gradient 
(range = 1.3–23.7 km from the city center) and separated by 

Table 3  Posterior means, 95% credible intervals, and adjustment sets 
for parameter estimates of direct effects, total effects, and univariate 
models for predictors of coat color (proportion melanic) among east-
ern gray squirrels (Sciurus carolinensis). Separate models were fit to 
estimate direct and total effects of predictor variables on proportion 
melanic with appropriate adjustment covariates based on our directed 
acyclic graph (Fig. 3B). Univariate estimates were based on models 
with only the predictor variable and no adjustment covariates. Predic-
tor variables included human population density (Human), building 
cover (Building), road cover (Road), impervious cover (Impervious), 
forest cover (Forest), forest fragmentation (Frag), and mammalian 
predator activity (Predator)
Direct Effects
Predictor Mean LCL UCL Adjustments
Human - - - -
Building 0.02 −0.29 0.32 Human, Road, Forest, Frag
Road −0.69 −1.01 −0.39 Human, Building, Forest, 

Frag
Impervious - - - -
Forest 0.47 0.17 0.78 Human, Building, Road, 

Frag
Frag 0.28 −0.07 0.64 Human, Impervious, For-

est, Predator
Predator −0.54 −0.83 −0.26 Human, Frag
Total Effects
Predictor Mean LCL UCL Adjustments
Human 0.42 0.18 0.67 -
Building −0.33 −0.54 −0.10 Human
Road −0.28 −0.54 −0.01 Building
Impervious −0.80 −1.42 −0.19 Human, Building, Road
Forest 0.16 −0.08 0.42 Impervious
Frag 0.41 0.07 0.74 Human, Impervious, 

Forest
Predator −0.54 −0.83 −0.26 Human, Frag
Univariate Estimates
Predictor Mean LCL UCL Adjustments
Human 0.42 0.18 0.67 -
Building −0.04 −0.22 0.15 -
Road −0.15 −0.34 0.02 -
Impervious −0.15 −0.35 0.04 -
Forest 0.20 −0.01 0.42 -
Frag 0.15 −0.05 0.35 -
Predator −0.14 −0.39 0.12 -
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While this aligns with previous studies showing a strong 
cline along the urbanization gradient (Cosentino and Gibbs 
2022; Cosentino et al. 2023), our DAG-informed analyses 
provided multiple new insights into the potential mecha-
nisms maintaining the urban–rural cline. Remarkably, the 
total effects of building cover, road cover, and impervious 
cover (all metrics of human impact commonly used to rep-
resent “urbanization effects”) on the prevalence of mela-
nism were each negative despite squirrel melanism being 
most prevalent in the city (Fig. 4, Table 3). These negative 
total effects suggest the distribution of the melanic morph is 
limited by various aspects of physical infrastructure, even 
in more urban areas where melanic individuals are gener-
ally most prevalent. Considering the positive total effect 
of human population density combined with negative total 
effects of physical infrastructure on squirrel melanism, our 
results suggest there remain unmeasured cause(s) repre-
sented by U in our DAG (Fig. 5) that play an important role 
in maintaining the urban–rural cline by favoring melanics 
in the city.

The statistical models informed by our DAG provided 
novel insights into specific mechanisms maintaining the 
urban–rural cline in melanism. For example, prior research 
showed melanic individuals are underrepresented among 
roadkill, relative to the gray morph—a finding attributed 

model included a process submodel to estimate morph-spe-
cific abundances and proportion melanic at each site, and a 
detection submodel accounting for temperature effects on 
activity. We estimated direct and total effects of measured 
variables in our DAG on proportion melanic with linear 
models, adjusting for DAG-informed covariates as needed. 
We also fit univariate models with each measured variable 
as a predictor of melanism to compare inferences with direct 
and total effects. Hierarchical models were fit in JAGS via 
the jagsUI R package (Plummer 2017; Kellner and Mer-
edith 2024) using mostly noninformative priors, but also 
with informative priors for detection and abundance inter-
cepts based on prior knowledge. All models were run with 
four chains and 4000 retained iterations after enough warm-
up or burn-in to reach convergence, which was confirmed 
visually with traceplots and R-hat < 1.01 (Gelman and Hill 
2007). Posterior distributions were summarized with means 
and 95% credible intervals. Details on statistical models are 
provided in Supplemental Text S1.

Results and discussion

Human population density had a positive total effect on the 
prevalence of squirrel melanism, with prevalence of mela-
nism greatest in more urbanized areas (Fig.  4, Table  3). 

Human 
population 

density

Building 
cover

Road 
cover

Impervious 
cover

Forest 
cover

Forest 
fragmentation

Predator 
activity

Univariate 
model

Total effect

Direct effect

Parameter estimate
2 1 0 1

Fig. 4  Parameter estimates for 
direct effects (green), total effects 
(blue), and univariate models 
(orange) for predictors of coat 
color (proportion melanic) among 
eastern gray squirrels (Sciurus 
carolinensis). The complete poste-
rior distribution is shown for each 
parameter, along with the mean 
(black circles) and 95% credible 
intervals. All parameter estimates 
were made with standardized 
predictors. Not all predictors have 
both direct and total effects based 
on our directed acyclic graph 
(Fig. 3B)
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patterns in melanism across the urban–rural gradient. This 
combination of forces might help explain the direct negative 
effect of predator activity and positive total effect of forest 
fragmentation on melanism. Although we did not find strong 
evidence of a direct effect of fragmentation on melanism, 
our analyses support the idea that fragmentation mediates 
the prevalence of melanism through its negative effect on 
predator activity (Fig. 5, Supplemental Table S1), leading to 
a positive total effect of fragmentation on melanism (Fig. 4, 
Table 3). The melanic morph may benefit from a suppres-
sive effect of fragmentation on predator activity locally, 
but it is important to note there was a strong positive direct 
effect of human population density on predator activity 
(Fig. 5, Supplemental Table S1), indicating predator activity 
was greatest in the city where melanics are most common. 
It is possible the melanic morph uses behavioral strategies 
to mitigate their predation risk in densely populated areas 
of the city where predator activity is greatest (Sarno et al. 
2015; Gaynor et al. 2019; Engel et al. 2020). Such strategies 
could include different activity patterns in space (including 
vertically from ground to canopy) and time (diel patterns), 
resulting in differing susceptibility to predation. Because 
vertical niche shifts have been linked to competition and 
predation, climate change, and urbanization (Rankin et 
al. 2018; Basham and Scheffers 2020; Borden et al. 2021; 

to humans more easily detecting and avoiding melan-
ics against gray asphalt when driving (Gibbs et al. 2019; 
Parlin et al. 2025; Proctor et al. 2025). However, our find-
ings show road cover had strong negative direct and total 
effects on the prevalence of melanism across the landscape 
(Figs. 4, 5; Table 3). This suggests melanic individuals may 
be avoiding areas with greater road cover, and thus previ-
ously observed underrepresentation of the melanic morph 
among roadkill (Gibbs et al. 2019; Parlin et al. 2025) may 
be due in part to habitat selection or behavioral avoidance 
of roads by melanics, rather than being a sole function of 
differences in visibility to people while driving. Isolating 
the direct and total effects of road cover while considering 
confounds (e.g., building cover) provided this new insight 
into why melanics are underrepresented among roadkill and 
contributes more evidence that within cities the prevalence 
of squirrel melanism is constrained by high disturbance.

Another key finding from our models was the strong 
negative direct effect of predator activity on the prevalence 
of melanism (Figs. 4, 5; Table 3). A previous translocation 
experiment showed survival is lower for melanic morph 
than the gray morph in rural woodlands (Cosentino et al. 
2023), and we know the melanic morph is generally more 
conspicuous than the gray morph (Proctor et al. 2025). As 
such, crypsis and predation pressure could contribute to 

Fig. 5  Direction of estimated direct 
effects overlaid on our directed 
acyclic graph. Blue solid lines 
indicate positive direct effects, red 
solid lines indicate negative direct 
effects, and black dotted lines 
indicate effects for which the pos-
terior distribution of the parameter 
estimate broadly overlapped zero. 
Purple arrows show causal path-
ways which could not be estimated 
due to unobserved processes. 
Parameter estimates for effects on 
squirrel melanism can be found in 
Table 3, and parameter estimates 
among measured environmental 
variables can be found in Supple-
mental Table S1
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is no longer negative (posterior mean = 0.04, 95% CI = −0.22, 
0.35). This positive bias is due to a positive effect of people 
on predator activity and the residual positive association 
between human population density and melanism operating 
through the unobserved processes. Graphical causal mod-
els, such as DAGs, highlight one way in which unobserved 
processes in urban systems – known or unknown – can be 
explicitly considered when estimating effects of interest.

A striking demonstration of the value of graphical causal 
models is seen when comparing estimated effects when 
appropriately adjusted based on a DAG versus univariate 
models commonly seen in urban ecology and evolution. 
For example, had we relied solely on univariate models 
to estimate the association between squirrel melanism and 
common urbanization metrics, we might have erroneously 
concluded that melanism is unrelated to any of the measured 
variables in our DAG other than human population density, 
as credible intervals for all univariate predictors other than 
human density overlapped zero (Fig. 4; Table 3). This finding 
raises significant concerns about using single-variable indi-
ces of urbanization. For example, impervious cover is com-
monly used to represent urbanization (Szulkin et al. 2020), 
yet our univariate model with impervious cover resulted in 
a posterior distribution that was largely negative, imply-
ing melanism is lowest in areas of high impervious cover 
(Fig. 4; Table 3). Had we used impervious cover alone as an 
index of urbanization, we might have concluded there was 
no evidence for an urban–rural cline, or even weak evidence 
for a reversed cline where melanism is greater in rural areas. 
Indeed, our own previous studies using impervious surface 
as a surrogate for urbanization likely underestimated true 
clines in melanism (Gibbs et al. 2019; Cosentino and Gibbs 
2022). If using single variables as proxies of urbanization 
to describe biodiversity patterns along urbanization gradi-
ents cannot be avoided, our results suggest it is best to use 
variables that are causal ancestors of environmental change 
in cities, namely the density of people (Fig. 5). Distance to 
city center or composite indices can also be used to describe 
spatial patterns of biodiversity along urbanization gradients 
(Moll et al. 2019; Alberti and Wang 2022), but we urge cau-
tion about using these variables for causal inference as they 
often aggregate multiple underlying mechanisms.

Conclusion

Overall, our research demonstrates that urban impacts on 
biodiversity are complex and involve a network of causal 
pathways. Environmental variables commonly used to rep-
resent urbanization may at best describe coarse patterns with 
respect to urbanization effects in ecology and evolution, but 
they are nearly impossible to interpret mechanistically (Moll 

Gámez and Harris 2022), future research should investigate 
differences in spatial–temporal behavioral patterns between 
color morphs and how it may impact the landscape of fear. 
Additional analyses are also needed to examine the possibil-
ity that predator impacts on squirrel melanism vary among 
predator species.

Despite these novel insights regarding mechanisms con-
tributing to the urban–rural cline in melanism, it is intriguing 
that melanism is most prevalent in Syracuse yet constrained 
by components of physical infrastructure that are wide-
spread in cities. This seemingly contradictory pattern may 
be due in part to the interaction of historic and contempo-
rary forces, including ecological, evolutionary, and social 
(Des Roches et al. 2021). For example, the melanic morph, 
once common across the forested landscape, was extirpated 
in many areas during the period of European colonialism 
when extensive hunting accompanied deforestation and 
logging in old growth forests near settlements (Robertson 
1973; Cronon 1991; Benson 2013; Thompson et al. 2013). 
Evidence suggests urban areas may have functioned as 
refugia for eastern gray squirrels in general, including the 
melanic morph (Benson 2013; Gibbs et al. 2019). Indeed, 
changing attitudes about nature led to efforts to deliber-
ately introduce squirrels to cities starting in the late 1800s, 
celebrating them as “our most loved” species in cities, and 
establishing a social attitude of tolerance and even admi-
ration (Benson 2013). Despite well-known cases of intro-
ductions of the melanic morphs to cities (e.g., Washington 
DC, Fischman et al. 2021), many squirrel translocations are 
undocumented. We strongly suspect human-mediated trans-
port and bans on hunting in densely populated cities, includ-
ing Syracuse, have played important roles in contributing to 
the maintenance of urban–rural clines in squirrel melanism.

Although such social forces can be difficult to measure, 
our DAG illustrates it can be important to include unmea-
sured processes in a causal modeling framework. As just 
one example, consider the direct negative effect of predator 
activity on melanism inferred from our analyses. Based on 
the DAG in Fig. 3B, the adjustment set we used to estimate 
the direct effect of predator activity on melanism included 
human population density and fragmentation. Adjusting 
for human population density was needed in part to close 
the backdoor path Predator activity ← Human population 
density → U → Squirrel melanism. If the Human population 
density → U → Squirrel melanism pathway was not included 
in the DAG, the direct effect of predator activity on squirrel 
melanism could be estimated without adjusting for human 
population density. Doing so would lead to a biased estimate 
of the direct effect of predator activity due to confounding 
with the unmeasured variable, U. Indeed, when we estimate 
the direct effect of predator activity on melanism without 
adjusting for human population density, the estimated effect 
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