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Abstract
Questions: With calls for afforestation to sequester carbon due to climate change, 
agricultural land will be converted to forests in the near future. Little is known about 
how the ecosystem services of reforested landscapes with an agricultural land-use 
history will differ from reference forests. Our objectives were to (i) test the hypoth-
esis that forests with a history of agricultural land use can provide the same carbon 
storage and biomass ecosystem services as adjacent reference forests, given some 
recovery time; (ii) explore whether there is a lag in the recovery of forest community 
composition due to prior agricultural land use; and (iii) demonstrate how remote-
sensing methods can improve our understanding of land-use legacies at large spatial 
scales.

Location:	Finger	Lakes	National	Forest,	NY,	USA.
Methods: Using historic air photos, landscape-scale lidar, and field surveys, we 

compared differences in biomass storage, forest structure, and vegetation communi-
ties between reference forests and post-agricultural forests at different stages of 
regeneration	in	the	Finger	Lakes	National	Forest,	New	York,	USA.	We	also	used	lidar	
to create a spatial model of biomass across the landscape to analyze the spatial distri-
bution of biomass across our study area.

Results: We found biomass and forest structure in post-agricultural forests 
generally recovered to levels typical of reference forests within 50 years of aban-
donment. Conversely, we found the composition of woody and herbaceous com-
munities still varied between reference and post-agricultural forests after 50 years 
of abandonment.

Conclusions: Collectively our results indicate afforestation efforts can be effec-
tive for carbon sequestration at early stages of forest succession. Our spatial model 
of biomass indicated that biomass levels can be low in forests with extensive edge. 
Further research is needed to understand how contemporary landscape structure 
interacts with legacy effects of agriculture to affect biomass and other ecosystem 
services.
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1  | INTRODUC TION

There are increasing calls for afforestation efforts to support draw-
down of CO2 levels and help mitigate greenhouse emissions world-
wide	(Griscom	et	al.,	2017;	Hawes,	2018;	Nave	et	al.,	2018).	In	order	
to produce enough new forests to make an impact, conversion of 
land to forests will be required (Bastin et al., 2019), including land 
previously used for agriculture. Abandoned farmlands (i.e., old fields) 
are important carbon sinks (Kuemmerle et al., 2011), and they pro-
vide additional ecosystems services, including water filtration, soil 
protection, and biodiversity support.

Although the potential benefits of afforestation are clear, it is un-
clear whether a history of agricultural land use constrains ecosystem 
services produced by recovering forests (Foster et al., 2003; Perring 
et al., 2016). For example, tillage associated with row crop agriculture 
causes substantial disturbance to the soil, leading to a reduction in sur-
face micro-topography and changes in soil heterogeneity (Fraterrigo 
et al., 2005), reduction of organic matter in the soil (Yesilonis et al., 
2016), and change in nutrient availability due to fertilizer use and ni-
trogen-fixing crops (Foster et al., 2003). These changes in the soil can 
lead to faster tree growth and reduced wood density, which have op-
posing effects on carbon sequestration (Alfaro-Sánchez et al., 2019.) In 
addition to changes in the soil, the seed bed of post-agricultural areas 
is different, as seeds from forest trees, shrubs, and herbaceous plants 
are replaced by those of early-successional colonizers (Brudwig et al., 
2013). Many forests herbs, in particular, have limited dispersal capac-
ity which can delay community recovery (Bellemare et al., 2002; Flinn 
& Vellend, 2005; Hermy & Verheyen, 2007). Additionally, non-native 
plants have been intentionally introduced to agriculture areas (Kuhman 
et al., 2011; Yesilonis et al., 2016), resulting in substantial changes in 
the vegetation communities of post-agricultural forests (Holmes & 
Matlack, 2019). Post-agricultural forests may also have different veg-
etation communities than reference forests with natural disturbance 
or silvicultural treatments due to the lack of coppice regeneration in 
post-agricultural areas (Dyer, 2010).

The northeastern United States have been experiencing afforesta-
tion over the past 150 years as former agricultural land was abandoned 
and allowed to regenerate as forest (Thompson et al., 2013). In the 
1930s, governmental programs supported federal purchase of former 
agricultural land and revegetation through the Civilian Conservation 
Corps (CCC) program. However, these efforts were not comprehensive 
(Marks & Gardescu, 1992), resulting in heterogeneous landscapes with 
a mix of regrown forests, legacy forests (i.e., no known recent history 
of agriculture), and agricultural artifacts such as fence rows and rock 
walls. Forests in a previously agricultural setting may coarsely look 
the same as a forest that was never farmed, but these forest types 
could provide different levels of carbon storage due to differences in 
community composition or wood density (Fotis et al., 2018; Alfaro-
Sanchez et al., 2019). It is also unclear whether forest structure and 
community composition diverge in their responses to agricultural land 
use, because both are related to above-ground biomass (Fotis et al., 
2018). For example, it is possible that forest structure and biomass re-
cover quickly in post-agricultural systems because agricultural fields 

are preferentially located in sites with high productivity, whereas the 
recovery of community composition may be slower due to invasive 
species or changes in seed beds (Holmes & Matlack, 2017). Examining 
the progression of forest recovery will be important for understand-
ing how afforestation efforts will affect ecosystem services, including 
support for wildlife populations via changes in forest community com-
position and structure (e.g., Cosentino & Brubaker, 2018; Goldspiel 
et al., 2019).

New	remote-sensing	 tools	available	at	broad	spatial	 scales	can	
help scientists characterize present-day forest structure and identify 
evidence of land-use legacies at a fine spatial scale. These include 
lidar point cloud data, lidar-derived digital elevation models (DEMs), 
and spatially referenced historic aerial photography. Lidar has been 
used to understand forest structure for the past two decades, but is 
increasingly available for broad-scale applications (Brubaker et al., 
2014).	Additionally,	with	the	use	of	ultra-high	resolution	DEMs	avail-
able from lidar, we can view signatures of historical land use such as 
rock walls, changes in surface texture, and tillage lines that show a 
legacy	of	agriculture	(Johnson	&	Ouimet,	2014,	2016).	By	using	lidar	
and aerial photography concurrently, we can map historic land use 
and changes over time, and also create fine-scale spatial models of 
current forest structure (e.g., tree height, biomass), which can help 
us understand responses of forest structure to historical land use.

We used remote-sensing data and field sampling to reconstruct 
historic	 patterns	 of	 land	 use	 at	 the	 Finger	 Lakes	 National	 Forest	
(FLNF)	 in	New	York,	USA.	Our	 objectives	were	 to	 (i)	 test	 the	 hy-
pothesis that forests with a history of agricultural land use can pro-
vide the same carbon storage and biomass ecosystem services as 
adjacent reference forests, given some recovery time; (ii) explore 
whether there is a lag in the recovery of forest community compo-
sition due to prior agricultural land use; and (iii) demonstrate how 
remote-sensing methods can improve our understanding of land-use 
legacies at large spatial scales.

2  | METHODS

2.1 | Study area

FLNF	 in	 central	New	York,	USA	 (42°30′	N,	76°48′	W)	 is	 federally	
owned and managed land that was acquired in the late 1930s and 
early	 1940s	 as	 willing	 landowners	 sold	 their	 farms	 to	 the	 federal	
government. Currently, the national forest consists of 6,521 ha of 
multiple-use forest and grassland maintained for cattle grazing. 
Common forest communities include Appalachian oak–hickory, rich 
mesophytic, successional northern hardwood, and various species 
of	conifer	plantations	(Edinger	et	al.,	2014).

2.2 | Field methods

We	 used	 Geospatial	 Modeling	 Environment	 (Beyer,	 2014)	 to	
randomly select 96 locations that were forested on the 2011 
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National	 Land	 Cover	 Dataset	 (NLCD)	 (Jin	 et	 al.,	 2019)	 and	 sepa-
rated	 by	 ≥200	m.	 In	 summer	 2014,	we	 established	 200-m2 circu-
lar plots (7.9 m radius) at each location, measured the diameter at 
breast	height	(dbh)	for	trees	≥10	cm	dbh,	and	identified	the	species	
of each tree. We estimated percent shrub cover for every woody 
species <10 cm dbh found in the plot using a cover-class methodol-
ogy (0%–5%, 6%–25%, 26%–50%, 51%–75%, 76%–95%, 96%–100%) 
(Daubenmire, 1959). We also established 1-m2 subplots randomly 
in each of the four cardinal directions from the centroid of each 
plot. We estimated herbaceous cover by species in each subplot 
using the same cover categories used for shrubs. Grasses were in-
cluded in herbaceous cover estimates but not identified to species. 
Herbaceous cover was only measured once during summer, so some 
spring ephemerals were likely missed in the sampling strategy. We 
found no herbaceous species at two sites.

2.3 | Land-use legacy descriptions

We identified aerial photos, produced by the United States 
Department of Agriculture, that provided coverage of the study area 
from	 both	 1938	 and	 1964	 and	 georeferenced	 these	 images	 using	
current	imagery	(2014).	For	each	era,	we	classified	and	digitized	land	
cover	 for	 FLNF	 as	 agriculture,	 shrub,	 or	 forest.	Areas	were	 classi-
fied as forest if they contained a closed canopy, whereas areas with 
woody vegetation but no closed canopy were classified as shrubs. 
Areas classified as shrub were primarily old-field successional areas. 
Using the land cover maps created from each era, we classified each 
area	forested	in	2014	as	a	reference	forest,	old	post-agricultural	for-
est, or young post-agricultural forest. Reference forests were con-
tinuously forested since 1938 and had no evidence of being used 
for row crop agriculture from the lidar-derived DEM. Because these 
forests are actively managed, we expect that some timber harvest-
ing occurred in these forests. Old post-agricultural forests were 
agriculture	or	shrub	in	1938	but	forested	in	1964,	and	young	post-
agricultural	forests	were	not	forested	in	1964	but	forested	in	2014.	
In addition to classifying historical land use at each sampling plot, we 
determined whether post-agricultural plots were revegetated as a 
conifer plantation based on field sampling.

As a secondary verification method for historical land-use classi-
fications, we used the lidar-derived 2-m resolution DEM-generated 
hillshade to examine each plot for signs of previous row crop agricul-
ture. Signs included nearby fencerow features, plow marks, or other 
textural signatures (e.g. lack of pit and mound topography) that are 
present in the hillshade (Figure 1). We verified that all reference sites 
had no record of row crop agriculture using any of our methods (but 
the site may have been grazed). If a site was forested in 1938 but had 
clear signs of previous agricultural land use, we changed its classifi-
cation to old post-agricultural forest (n = 3 sites).

2.4 | Lidar-modeled biomass

Using	allometric	equations	developed	by	Chojnacky	et	al.	(2014),	we	
calculated the biomass of each tree using the species and DBH, and 
total biomass was estimated for each plot. We also used raw lidar 
point clouds to generate models of canopy height and biomass for 
the	entire	FLNF.	Lidar	data	were	collected	as	part	of	a	FEMA	dataset	
in	2014,	flown	and	processed	by	Northrop	Grumman,	using	a	Leica	
ALS 60 and Optec 3,100 airborne lidar sensor during the leaf-off 
season. This was a relatively low-density dataset with a point spacing 
of approximately 1.5 m. The final lidar data products were produced 
within	the	specifications	of	the	USGS	National	Geospatial	Program	
LIDAR Base Specifications, Version 1.0. A 2-m resolution DEM was 
generated by the vendor, with a post-processing root mean square 
error of 12.5 cm vertically.

Because this was a relatively sparse, leaf-off lidar dataset, we 
created a 10-m resolution canopy height model to reduce the ap-
pearance	of	gaps	(Brubaker	et	al.,	2014)	for	FLNF	using	the	canopy	
model	 tool	 in	FUSION	(McGaughey,	2018).	We	also	used	the	grid-
metrics	 tool	 in	FUSION	to	create	quantitative	height	variables	 (eg.,	
mean, max, 90th percentile) for the point cloud at a 20-m resolution. 
Gridmetrics creates a series of descriptive statistics for each grid cell 
(n =	74)	as	described	in	the	FUSION	manual	(McGaughey,	2018).	We	
chose a 20-m resolution to increase the number of points found in 
each cell in order to improve the accuracy of the quantitative metrics.

We used random forest regression to create a model of biomass 
using the gridmetric	variables	from	FUSION.	Random	forest	is	a	type	

F I G U R E  1   Current aerial photograph 
and lidar-derived hillshade showing the 
same forested area. Plow lines and other 
relic agricultural features can be clearly 
seen in the hillshade in the southern and 
eastern portion, while the northwest 
corner does not contain these features. 
Current aerial photography shows a 
closed-canopy forest
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of classification and regression tree model that uses a randomly se-
lected subset of variables to create a “forest” of regression trees. We 
chose this method because it has shown to be useful in working with 
lidar datasets as a result of their large number of variables (Cutler 
et al., 2007; Hudak et al., 2008; Brubaker et al., 2018). We used the 
randomForest package (Liaw & Weiner, 2002) in R (R Core Team, 
2019)	to	create	a	model	of	biomass	for	FLNF.	We	initially	tested	all	of	
the	elevation	metrics	produced	by	the	gridmetrics	tool	in	FUSION,	
and removed variables with a lower importance value using an it-
erative method until the amount of variability was maximized with 
the fewest variables (Díaz-Uriarte & Alvarez de Andrés, 2006). Our 
final model included three variables: average absolute deviation, 
95th percentile height, and percent cover of first returns. Using our 
best final model, we generated a 20-m resolution biomass map of 
the	FLNF	using	the	lidar-derived	grid	metrics	variables.

2.5 | Statistical methods

For each plot, we calculated basal area and tree density from our 
field measurements. Each species was classified as native or non-
native, and total percent cover, total native percent cover, and total 
non-native percent cover were calculated by summing the median 
cover-class values for all species present in a plot. We calculated 
dominant/co-dominant tree height for each plot using the lidar-gen-
erated	canopy	height	model	(Brubaker	et	al.,	2014).	Trees	were	con-
sidered dominant if their crown received light from multiple sides, 
and co-dominant if their crowns received full light from above on 
the area of their crown. We also created a presence/absence matrix 
of woody and herbaceous species data for each plot. All statistical 
analyses were conducted in R.

We	used	ANOVA	to	compare	canopy	height,	basal	area,	biomass,	
percent shrub cover, woody species richness, herbaceous richness, 
tree density, percent herbaceous cover, and percent non-native 
shrub cover among reference forests, young post-agricultural for-
ests, and old post-agricultural forests. Assumptions of normality 
and heteroscedasticity were largely met, and the results of stan-
dard	ANOVAs	were	not	 qualitatively	 different	 than	permutational	
ANOVA.	For	significant	ANOVAs	we	examined	all	pairwise	compar-
isons using Tukey's Honest Significant Difference approach using a 
family-wise Type 1 error rate of 0.05.

We used multivariate methods to test for differences in woody 
and herbaceous community structure among forest types. We gen-
erated a Sorensen distance matrix for woody and herbaceous spe-
cies using the presence/absence data. We then used permutational 
multivariate	 ANOVA	 (PERMANOVA;	 Anderson,	 2001)	 to	 test	 for	
differences in community composition among forest types for the 
woody	 and	 herbaceous	 communities.	 Significant	 PERMANOVAs	
were followed up with pairwise comparisons among forest types 
using the Holm method to control the family-wise Type 1 error rate 
(Holm,	1979).	We	used	non-metric	multidimensional	scaling	(NMDS;	
Kruskal,	 1964)	 to	 visualize	 differences	 in	 community	 composition	
among forest types. For the herbaceous community, we had to 

remove sites with a single species (n = 8) in order to find a conver-
gent	solution	for	the	NMDS.	We	used	the	vegan package (Oksanen 
&	 Blanchet,	 2019)	 to	 conduct	 the	 PERMANOVA	 and	 NMDS,	 and	
the RVAideMemoire package to conduct multiple comparison tests 
(Hervé, 2020).

Finally, we compared the spatial distributions of our modeled 
biomass values to understand how the spatial patterns of biomass 
vary across forests with different histories of agricultural land use. 
We also compared the frequency distributions of biomass values 
among reference forests, young post-agricultural forests, and old 
post-agricultural forests.

3  | RESULTS

3.1 | Land-use history and forest structure

Land	cover	digitized	from	aerial	imagery	showed	that	FLNF	consisted	
of	2,317	ha	that	are	not	forested,	1,465	ha	of	young	post-agricultural	
forest, 1,303 ha of old post-agricultural forest, and 1531 ha of refer-
ence forest (Figure 2). A subset of the forest structural attributes 
we examined varied among reference sites, young post-agricultural 
sites, and old post-agricultural sites (Table 1, Figure 3). Basal area 
and canopy height were significantly greater in old than young post-
agricultural sites. Woody biomass and canopy height were greater in 

F I G U R E  2  Current	land	cover	of	Finger	Lakes	National	Forest	
(FLNF).	Reference	forests	are	shown	in	dark	green.	Inset	shows	
location	of	FLNF	in	New	York,	USA
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reference than young sites. Herbaceous cover was greater in young 
than old post-agricultural sites, but there was no difference between 
either	type	of	post-agricultural	site	and	reference	sites.	Non-native	
shrub cover was significantly greater in young post-agricultural sites 
than old post-agricultural or reference forests. We found no varia-
tion in tree density, woody richness, shrub cover, or herbaceous rich-
ness among forest types (Table 1, Figure 3).

3.2 | Vegetation community analysis

Woody community composition varied significantly among forest 
types	 (PERMANOVA,	F2,93 = 5.28, p = 0.001, R2 = 0.10). Pairwise 
comparisons revealed significant differences in community compo-
sition between each combination of forest types (p	 ≤	0.005).	 The	
NMDS	ordination	(stress	= 17.8%) revealed clustering of woody spe-
cies composition with forest type, with the greatest separation be-
tween	reference	plots	and	young	post-agricultural	plots	 (Figure	4).	
Early-successional species and non-native species such as Malus 
sp. and Crataegus sp. clustered with young post-agricultural sites, 
whereas late-successional species such as Ostrya virginiana, Tilia 
americana, Acer saccharum, and Carya spp. clustered with the ref-
erence sites (Appendix S1). Quercus spp. and Pinus spp. tended to 
be most commonly found in old post-agricultural sites. Acer rubrum 
and Pinus strobus were common in all forest types. There was con-
siderable overlap in woody community composition, with the vast 
majority of woody species clustering with at least two forests types 
(Appendix S1).

Herbaceous plants were detected in all but two plots, and 
community composition varied significantly among forest types 
(PERMANOVA,	F2,91 =	 3.45,	p = 0.001, R2 = 0.07). Pairwise com-
parisons revealed that community composition was significantly 
different between reference and post-agricultural plots (p	≤	0.004),	
but there was no difference in community composition between 
young and old post-agricultural plots (p =	0.12).	The	NMDS	ordina-
tion (stress =	12.3%)	corroborated	the	results	of	the	PERMANOVA,	
showing the greatest separation between reference and both young 
and old post-agricultural plots (Figure 5). Species that were present 

in both the young and old post-agricultural forests, but not the ref-
erence forests included Taraxacum officinale, Veronica officinalis, and 
Toxicodendron radicans. Species present in both old post-agricultural 
and reference, but not young post-agricultural forests included 
Polygonatum biflorum, Maianthemum racemosum, Maianthemum 
canadense, Caulophyllum thalictroides, and Arisaema triphyllum 
(Appendix S2).

3.3 | Lidar-modeled biomass

The best-performing randomForest model explained 52.3% of the 
variability in biomass using three lidar height variables: average ab-
solute deviation, 95th percentile height, and percent cover of first 
returns. The biomass model mirrored the forest type map closely, 
with reference forests tending to have the greatest biomass values. 
Biomass was lowest in non-forested areas, followed by the young 
post-agricultural forests, then the old post-agricultural (Figure 6). 
The frequency distributions of biomass values across forest types 
for	 the	 entire	 FLNF	 corroborated	 the	 visual	 patterns.	 Reference	
forests	had	 the	greatest	median	biomass	 (415.3	 t/ha),	 followed	by	
old	 (370.1	 t/ha)	 and	 young	 post-agricultural	 forests	 (191.4	 t/ha)	
(Figure 7). Biomass had a bimodal distribution in all forest types. We 
found the lower peak in biomass (<200 t/ha) corresponded to areas 
along forest edges, roads, trails, etc.

4  | DISCUSSION

4.1 | Biomass and forest structure

Biomass was lower in young post-agricultural forests than reference 
forests, but we found no significant difference between the biomass 
of old post-agricultural forests and reference forests from our field 
sampling. Our lidar-based model of biomass corroborated these re-
sults, showing substantial overlap in the distributions of biomass be-
tween old post-agricultural and reference forests. This supports the 
hypothesis that post-agricultural forests and those created through 
afforestation efforts can be important for carbon sequestration 
in the face of climate change. Our results demonstrate that within 
50 years of abandonment, post-agricultural forests provide a similar 
amount of biomass as older forest. However, it should be noted that 
we only measured above-ground living biomass. Below-ground bio-
mass and coarse woody debris are both known to be an important 
contributor	to	forest	carbon	storage	(Nave	et	al.,	2018),	but	we	did	
not include these in our study. Previous work has suggested a lag in 
below-ground recovery of carbon (Richter et al., 2000; Kolbe et al., 
2016), but more research is needed to understand the magnitude 
and timing of this recovery.

Multiple patterns emerged from our spatial model of biomass that 
provide insight into the role of landscape structure in mediating ef-
fects of land-use history on biomass. First, we discovered a bimodal 
distribution of biomass in each forest type. When viewed in GIS, the 

TA B L E  1  Results	of	ANOVAs	comparing	forest	structure	metrics	
among young post-agricultural, old post-agricultural, and reference 
forests (group df = 2, error df = 93). See Figure 3 for group means

Response variable F p

Herbaceous cover 3.2277 0.044

Herbaceous richness 1.0267 0.362

Shrub cover 1.8959 0.156

Non-native	shrub	cover 6.8091 0.002

Woody richness 0.6389 0.530

Tree density 2.1358 0.124

Tree height 10.717 <0.001

Woody biomass 2.8097 0.065

Basal area 3.9083 0.023
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lower peak in biomass values most commonly represented forest 
edges, and therefore included both forest and non-forest in one cell. 
Young post-agricultural forests in particular had greater edge habitat 
than old post-agricultural and reference forests, since they tended 
to border current agricultural land. This explains the strong peak of 
low-biomass values in young forests (Figure 7). Second, the range in 
biomass values was similar among forest types, with high-biomass 
areas persisting even in young post-agricultural sites. High-biomass 
areas likely persist in young forests because of the historical pres-
ence of hedge rows and other large trees. These landscape elements 
function as refugia for forest species and can facilitate forest recov-
ery via seed dispersal following agricultural abandonment (Corbit 
et al., 1999). More generally, the mosaic pattern of historical land 
use in this system with small farms intermixed with forest stands 
(Figure 2) likely added resilience to the post-agricultural system by 

maintaining connectivity of old fields to source populations. Biomass 
recovery in post-agricultural forests may be more constrained in sys-
tems where historical forest loss was rapid and widespread. Despite 
extensive evidence that historical land use has a greater impact on 
forest community composition than landscape configuration (e.g., 
Motzkin et al., 1999; Singleton et al., 2001; Vellend et al., 2006; 
Brudvig & Damschen, 2011), additional studies are needed to care-
fully tease apart the independent contributions of historical agricul-
ture and landscape structure on biomass recovery in regenerating 
forests.

A subset of post-agricultural forests were replanted with native 
or non-native conifers, a land-use intervention that was common 
throughout the eastern and northern United States in the 1930s 
and	1940s	(Verschoor	&	Van	Duyne,	2012).	These	plantations	were	
often reforested in conifers as part of a soil conservation strategy, 

F I G U R E  3   Comparison of forest structural metrics among young post-agricultural, old post-agricultural, and reference sites. Open points 
represent data points, red circles represent means, error bars represent 95% confidence intervals, and letters indicate results of multiple 
comparison tests at p < 0.10
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and multiple species of conifers were used in different areas, in-
cluding Picea abies, Pinus sylvestris, Pinus resinosa, and Pinus banksi-
ana	at	FLNF.	Most	conifer	plantations	in	our	study	system	were	in	
old post-agricultural forests (n =	 14),	 so	we	conducted	a	post-hoc	
analysis to compare the mean biomass for plots that were replanted 
and those that were not (n = 23) within old post-agricultural forests. 
Mean biomass was not significantly different between plantations 

and non-plantations (t = 1.50, df = 35, p =	0.14).	Former	plantations	
often contained a large percentage of hardwoods and other species 
that have grown in since conifers were planted. In this case, active 
management with plantations did not appear to increase the speed 
of biomass recovery among old post-agricultural sites, and plan-
tation strategies have largely been abandoned (Verschoor & Van 
Duyne, 2012). We were not able to test whether biomass recovery 

F I G U R E  4  Non-metric	
multidimensional	scaling	(NMDS)	
ordination of woody species with 
covariance ellipses for each forest type. 
Circles represent sampling plots
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was initially accelerated when forests started regenerating because 
of the low number of plantations in young post-agricultural plots.

Forest structure attributes that we measured (tree height, basal 
area, tree density, percent shrub cover, and percent herbaceous 
cover) were similar between reference forests and post-agricul-
tural forests, showing that recovery of structural characteristics 
can occur without intervention (the majority of old post-agricul-
tural sites were not replanted in conifer plantation). Flinn and Marks 
(2007) found similarities in stem density and size class distributions 
between post-agricultural and reference forests, but our study ex-
tends those results to include younger post-agricultural forests. Tree 
height was the only structural attribute that strongly varied between 
young post-agricultural and older forests.

One reason why post-agricultural forests recovered relatively 
quickly may be that in our study region, areas that were formerly 
used for agriculture were at lower elevations, had less steep slope, 
and more productive soils than those that were left as forest (Flinn 
et al., 2005). This pattern should hold in other areas being consid-
ered for afforestation, as land that is suitable for growing crops could 
be more productive than regions that were left in forests (Cramer 
et al., 2008).

4.2 | Forest community data

When we examined the woody plant and herbaceous community 
data, there was a significant difference between all three forest 
types in woody and herbaceous plant community composition. 
This contrasts with our biomass and forest structure data, and 
suggests that there may be a recovery lag in forest community 

composition compared to biomass and structural attributes. Flinn 
and Marks (2007) found similar differences in forest composition 
between post-agricultural and reference forests, and other stud-
ies have shown that changes in vegetation community can persist 
for decades (Motzkin et al., 1999; Flinn & Vellend, 2005). Because 
afforestation creates habitat heterogeneity in forest successional 
states, allowing natural afforestation could result in an increase of 
beta diversity, and therefore high gamma diversity at a landscape 
scale. Several bird and mammal species in the northeastern U.S. re-
quire early-successional forest habitat or a mosaic of habitat types 
at different stages of succession (Fuller & DeStefano, 2003; King & 
Schlossberg,	2014;	Bakermans	et	al.,	2015).

Although percent cover of non-native species was greatest in 
young post-agricultural forests, the future trajectory of these for-
ests is unclear. Young post-agricultural forests probably have less 
dense canopies, thereby favoring colonization by invasive species 
which tend to be less shade-tolerant than native forest species 
(Martin et al, 2009). Holmes and Matlack (2019) used a chronose-
quence approach and similarly found a reduction in invasive spe-
cies with increased time since disturbance. Young post-agricultural 
sites may receive greater propagule pressure from non-natives than 
older forests because of their proximity to roads and agricultural 
fields (Kuhman et al., 2011), and it is possible that native species 
outcompete non-native species over time. It is also possible there 
were fewer non-native species present in the landscape when old 
post-agricultural forests were abandoned. Many non-native species 
are more likely to be found in sites with higher pH and cation ex-
change capacity (Kuhman et al., 2011), which likely include young 
post-agricultural forests compared to older forests due to the his-
toric patterns of agriculture in this region (Flinn et al., 2005). Further 

F I G U R E  6   Map of modeled biomass 
(metric tons/hectare). Biomass values 
were generated with a randomForest 
model using a lidar point cloud of 
elevations. Higher values are shown in 
white and light gray, and lower values are 
shown in dark gray and black. Land cover 
is shown for comparison
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studies are needed to understand the mechanisms explaining why 
non-native cover is greatest in young post-agricultural forests, and 
whether active management will be needed to restore forest com-
munity composition.

5  | CONCLUSIONS

Our results suggest that forest ecosystems in the northeastern 
U.S. can be resilient to agricultural land use, including a history 
of intense disturbance (e.g., tillage). Old post-agricultural forests 
were similar to reference forests in all measures, and post-agri-
cultural forests regain most of their biomass within 50 years. In 
a time of global change, these results support the calls to refor-
est large portions of our landscape for the goal of carbon seques-
tration. They also show that in addition to carbon sequestration, 
new forests may support a variety of ecosystem services, includ-
ing wildlife habitat and biodiversity support, water filtration and 
storage, and nutrient cycling, although some management may 
be necessary in order to maintain habitat for early-successional 
species. We also found that remote-sensing methods were useful 

to	increase	our	understanding	of	land-use	legacy	effects	in	FLNF.	
The relatively sparse lidar dataset collected over a landscape scale 
still provided enough data to model biomass and show artifacts of 
agriculture on the landscape. More research is needed, however, 
to understand the complicated relationships between current 
landscape configuration and fragmentation, non-native species, 
and land-use legacies in order to optimize the ecosystem benefits 
of afforestation efforts.
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