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Abstract: Citizen science holds great promise for collecting useful environmental data over large spatial scales.
However, statistical issues that arise in the analysis of citizen science data may be relatively unfamiliar to scientists
accustomed to data collected with traditional research methods. In particular, citizen science projects are often de-
signed with standard randomization procedures, but volunteers may drop-out of a project in a highly non-random
manner. For example, if volunteers are less likely to continue monitoring sites that are highly urbanized or polluted,
these sites will be under-represented in analyses, and observed patterns could be biased accordingly. We tested for
non-random drop-outs in the context of the North American Amphibian Monitoring Program (NAAMP), a road-
based, citizen-science survey of calling frogs and toads. We found that discontinuation of survey routes by NAAMP
volunteers was associated with high traffic volume, high noise levels, and low forest cover along these routes. The
absolute increase in probability of dropping out of the program that was associated with these factors was often low
(e.g., 2–10%), butmuch larger increases in drop-out probabilities (e.g., 40–70%) were predicted when traffic or noise
were particularly high or when multiple factors were considered simultaneously. In addition, analysis of amphibian
count data suggested that relatively low counts of amphibian and low species richness were also associated with
increased probability that survey routes would be discontinued. Together, these non-random drop-outs led to
the decreased representation of highly urbanized sites in our data set, and may have altered the estimated relation-
ships between explanatory variables (e.g., traffic, forest cover) and amphibian species richness. Our results, there-
fore, suggest that citizen science projects need to be designed after careful consideration of the factors that promote
retention of volunteers and the effects that non-randomdrop-outsmay have on the data they generate. Stratification
that takes non-random drop-outs into account may be necessary to ensure adequate representation of some kinds
of survey sites in citizen science projects.
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Citizen science projects increasingly generate high volume
data sets over broad geographic areas (Dickinson et al.
2010). Large-scale citizen science projects have focused on
issues as wide-ranging as bird distributions (e.g., Link and
Sauer 1998) and plant responses to climate change (Chung
et al. 2011).Many citizen science projects are also highly rel-
evant to issues of water quality and aquatic habitat conserva-
tion. For example, FreshWater Watch (https://freshwater
watch.thewaterhub.org/) is a global network of citizen scien-

tists who collect water quality data such as pH, nitrate and
phosphate levels, and turbidity at sites of their choosing.
MiniSASS (http://www.minisass.org/en/) provides a gen-
eral protocol for monitoring stream health through aquatic
arthropod communities and is being applied across south-
ern Africa. At a smaller scale, Florida Lakewatch (http://
lakewatch.ifas.ufl.edu/how.shtml) coordinates water chem-
istry monitoring throughout the state, and Virginia Save Our
Streams (http://www.vasos.org/)monitors the species diver-
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sity of aquatic insects as ameasure of streamquality andbio-
diversity. Similar programs exist throughout North America
and Europe and are expanding in other parts of the world.

From a scientific perspective, the potential for generating
large data sets is one of the most exciting aspects of citizen
science.However, thebenefits of ‘bigdata’areoften tempered
by issues of data quality (Hochachka et al. 2012, Kosmala
et al. 2016). A number of studies have evaluated the quality
of data generated by citizen science projects (Engel and Vo-
shell 2002, Genet and Sargent 2003, Delaney et al. 2008, Crall
et al. 2011, Kremen et al. 2011). Most of these studies focus
on the data collection process (e.g., volunteers’ ability to sam-
ple and identify species of interest), which volunteers may
either perform well (e.g., Delaney et al. 2008, Crall et al.
2011) or poorly (McClintock et al. 2010, Miller et al. 2012).
However, data quality may also be constrained by the proj-
ect design. For example, citizen science projects are often
faced with a trade-off between optimizing the study design
and facilitating volunteer participation (Dickinson et al.
2010). In particular, randomization of study sites is not al-
ways feasible for citizen science projects. Volunteers may
be more amenable to monitoring a stream they know well
than one that is randomly assigned to them. Similarly, vol-
unteers may be more interested in water quality near their
own home than at a randomly generated site. For this rea-
son, some citizen science projects forego randomization and
allow volunteers to choose their own study locations. In these
cases, it is necessary to estimate and correct for bias in sam-
pling locations before making general inferences about spe-
cies distributions, habitat conditions, or water quality across
a landscape (Bird et al. 2014, Isaac et al. 2014).

To allow for more direct inference, some citizen science
projects do attempt to randomize study locations as in tra-
ditional research designs. For example, in the UK’s National
Amphibian and Reptile Recording Scheme (NARRS; http://
www.narrs.org.uk/), volunteers are assigned a random 1-km2

square plot from within a 5-� 5-km grid centered on their
residence. Within the selected square, volunteers monitor
the pond closest to the SW corner to reduce selection bias.
Similarly, the North American AmphibianMonitoring Pro-
gram (NAAMP) starts with randomly-generated roadside
survey routes. Coordinators in each state assign volunteers
a route near their home, and volunteers identify precise sam-
pling locations (i.e., water bodies) along this route. Thus,
NAAMP survey routes can be thought of as a random selec-
tion of roadside habitats within the region.

However, even when survey locations are initially assigned
at random, volunteer monitors may drop out of the project
at any time. If these drop-outs are non-random (i.e., they are
associated with monitoring site characteristics), substantial
discrepancies may arise between the sample data and the
broader area of interest. These drop-outs could, therefore,
have several distinct effects on citizen science data. First, non-
random drop-outs could lead to the under-representation

of some site types in the final data set. For example, if volun-
teers tend to shy away from very urbanized or very polluted
sites, these sites may end up under-represented. Second,
non-random drop-outs could influence the observed rela-
tionships among variables within a data set. If the factors
that affect retention of volunteers are the same factors that
are being investigated in a study (e.g., urbanization, land use),
predictor variables could be confounded with observation
effort. Thus, there is a need to understand the factors that
influence retention of volunteers as well as the potential ef-
fects of drop-outs on patterns within the data. The expan-
sion of citizen science programs has exacerbated this need.

In 2013, we began working with NAAMP data in a col-
laborative project to determine the relationships between
pond-breeding amphibian distributions and land use across
the Eastern and Central United States (Cosentino et al. 2014,
Marsh et al. 2017). We were surprised to discover a weak
but non-zero relationship in these data between the number
of times a site had been surveyed and the amount of forest
cover at that site. The NAAMP survey routes had been de-
veloped through randomization, so it was not clear to us why
this relationship existed. In this paper, we re-analyzeNAAMP
data from 2 previously compiled survey route data sets and
1 newly compiled data set to test for non-randomdrop-outs
by volunteers. Specifically, we ask what land cover variables
(i.e., forest cover, agricultural cover, developed cover, wet-
land area, road density, traffic volume, and noise level) influ-
ence volunteer retention in NAAMP beyond 1 or 2 y. We
also ask whether initial frog detections affect volunteer re-
tention. We then analyze the effects that non-random drop-
outs have on the distributions of these explanatory variables
and on their apparent relationships with observed amphib-
ian species richness. Finally, we outline strategies for either
reducing the frequency of non-random drop-outs in citizen
science projects or building non-random drop-outs into the
project design itself.

METHODS
NAAMP surveys

NAAMP is a citizen-science monitoring initiative orga-
nized by the U.S. Geological Survey (Weir and Mossman
2005) that ran from 1997 to 2015 across most states in the
Eastern and Central United States. NAAMP was based on
night-time surveys for calling anurans (frogs and toads), which
were monitored from roadside survey locations. NAAMP
volunteers were assigned randomly-generated driving routes
that were as close as possible to their residence (Weir and
Mossman 2005). Observers initially traversed routes during
the daytime to select 10 sampling locations (stops). Stops
were located at least 0.8 km apart at sites where bodies of
water were visible within 200 m of the road. The route sur-
veys were carried out after dark in time windows that
spanned the breeding season of anurans in the region. Dur-
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ing a survey, observers would get out of their cars at each
stop and record the number of anuran calls heard over a
5-minute survey period. In addition, observerswould record
the number of cars passing by on the road and whether or
not background noise may have interfered with their obser-
vations. Surveys were usually carried out 3� /y, though oc-
casionally theywere carried outmore or less often at the dis-
cretion of the volunteer.

NAAMP volunteers were trained by state coordinators
in data collection and species identification. Audio files of
local species were supplied to volunteers, along with infor-
mation on which species were likely to be heard. Beginning
in 2006, new volunteers were required to complete an online
‘Frog Quiz’ that required them to successfully identify spe-
cies from recorded calls.

Data compilation
Our analyses relating survey discontinuation to route

characteristics are based on 3 data sets. The 1st and 2nd data
sets were compiled in 2013 and 2014, respectively, in con-
junctionwith previous analyses of NAAMPdata (Cosentino
et al. 2014,Marsh et al. 2017). These two data sets are struc-
tured differently—in the 1st (hereafter ‘nested data’) multiple
survey stops are sampled from each survey route, whereas in
the 2nd (‘non-nested data’), only one stop is sampled from
each route. Analyses of these two data sets can be viewed
as replications that ensure conclusions are not specific to
a single approach for compiling NAAMP data. The 3rd data
set was compiled specifically for the analysis of the effects of
frog detections during volunteers’ initial surveys, as initial
detections had not been recorded in our previous analyses.
Methods for compiling these data sets are summarized be-
low, and the data themselves are available as Supplemental
Materials.

In 2013, we created the nested data set by compiling an-
uran data from multiple stops within each of 406 NAAMP
survey routes from 13 states: Florida (FL), Massachusetts
(MA), Minnesota (MN), Missouri (MO), North Carolina
(NC), NewHampshire (NH), New York (NY), Pennsylvania
(PA), South Carolina (SC), Texas (TX), Virginia (VA), Ver-
mont (VT), and West Virginia (WV). These surveys were
conducted between 1997 and 2012. Routes were classified
by region as ‘North’ or ‘South’ as these regions tend to have
different land uses and different anuran species composi-
tion. We also characterized landscape structure within 1-km
buffers around each survey stop. To avoid spatial overlap
in landscape buffers among stops, we compiled data only
for stops 1, 4, 7, and 10 within each route, which ensured
that most stops were ≥2 km apart. For each stop, we calcu-
lated total number of surveys, proportion of surveys in
which interfering noise was recorded (‘noise level’), presence
or absence of each species across all surveys, total number
of species detected across all surveys (i.e., species richness),

andmean number of cars passing by during the 5-m anuran
counts (‘traffic volume’). In practice, noise level and traffic
volume were highly correlated. In some analyses it was pos-
sible to distinguish the effects of these variables, whereas
in others we were not able to disentangle their effects. Sur-
veys encompassed different time periods for different stops,
because observers started and ended their participation in
NAAMP in different years, or in some cases observers changed
without survey interruption. The median number of surveys
per stop in our data set was 12 (i.e., 4 y; range5 1–45 surveys).

We used qGIS (version 1.8; QGIS Geographic Informa-
tion System, Open Source Geospatial Foundation Project)
or ArcGIS (version 10.2, Environmental Systems Research
Institute, Redlands,California) software to characterize land-
scape conditions present at each NAAMP stop. Landscape
analysis was based on spatial data we imported from the
National Land Cover Database (NLCD; Fry et al. 2011), the
National Wetlands Inventory (NWI; US Department of
the Interior 2013), and the TIGER road database (US Cen-
sus Bureau 2013).We used these layers to calculate the fol-
lowing variables for 1-km buffers around each NAAMP
stop: proportion of land that was forested, agricultural, and
developed; total wetland area; and total linear road length
(‘road density’). Tomake these data comparable to those from
the non-nested data set (see below), all variables for the 4
stops within each route were averaged to yield 1 summary
value for each route. Landcover variables were inversely cor-
related (e.g.,more forest cover necessarilymeans less agricul-
tural cover), so we avoided constructing multivariate models
that included pairs of highly correlated landcover variables.

In 2014, we created the non-nested data set by selecting
1 random NAAMP stop within each of 567 survey routes
in the same 13 states as above. These surveys spanned the
years 1997 to 2013. In the non-nested data, routes were clas-
sified into three regions (North, South, andMidwest) as the
addition of routes fromMO and MN give us sufficient data
to split off Midwestern routes. Landscape metrics for these
stops were compiled as in the previous data set. However,
since we used only 1 stop for each route, we did not average
landscape metrics across stops. Overlap between the stops
in the nested and non-nested data was ∼30%, so analyses
of these data sets were largely independent.

The nested and non-nested data sets were used to assess
if route discontinuation was related to landcover variables.
However, we also hypothesized that route discontinuation
might be affected by the number of frogs detected during
the 1st few years of surveys by each volunteer. In the prior
data compilations we had not distinguished these early sur-
veys from later surveys. We, therefore, compiled a 3rd data
set by extracting data from all NAAMP routes in FL, MO,
VA,VT, andWV spanning the years 2002 to 2013 (203 routes
total). For each route we determined the total number of re-
corded anuran detections per survey for each of the first 2 y
of surveys.
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Predictors of NAAMP route discontinuation
In a prior study (Cosentino et al. 2014), we found a pos-

itive relationship between survey effort and observed spe-
cies richness adjusted for net primary productivity (rp 5
0.21) that was most pronounced for routes with <9 surveys
(typically <3 y of data, Fig. 1). For sites that had ≥9 surveys,
the correlation between survey number and observed rich-
ness was <0.10. Routes with <9 surveys appeared to under-
estimate species richness, sowe sought to identify why some
volunteers stop their routes after only 1 or 2 y. Two thresh-
olds were used to classify a route as continued or discontin-
ued: 1) whether routes were surveyed for >1 y, or 2) whether
routes were surveyed for >2 y. These thresholds were used
to classify routes for both the nested and the non-nested
data sets. Our rationale for classifying routes as continued
based on whether >1 y of surveys were completed is that
these routes may bemost indicative of the factors that cause
volunteers to end their participation. Our rationale for clas-
sifying based on whether >2 y of surveys were completed
was that our prior analyses suggested that >2 y of data were
required to produce reliable estimates of species richness
on a route. These 2 classification schemes yielded similar
results, and we present both below for comparison.

Univariate relationships with route discontinuation
Once routes were classified as discontinued or continued,

we used logistic regressionmodels on each data set to deter-
mine which factors predicted route discontinuation. We ex-
amined: 1) geographic region, 2) proportion of the landscape
within 1 km of survey stops that was forested, agricultural,
wetland, or developed, 3) road density within 1 km, 4) mean

traffic volume during surveys, and 5) proportion of total sur-
veys with noise interference (‘noise level’).

We first evaluated each of these factors individually to
assess whether they were related to the probability of route
discontinuation. We had noted a positive relationship be-
tween forest cover and survey continuation during our pre-
vious analysis ofNAAMPdata, so results with respect to for-
est cover for the nested data should not be viewed as an a
priori hypothesis test. However, our analysis of the role of
forest cover in the non-nested data should represent a valid
test of this relationship.

Multivariate relationships with route discontinuation
Once we analyzed each variable individually, factors that

were consistently related to survey discontinuationwere en-
tered into a single multivariate logistic regression model for
eachdata set/discontinuation threshold to evaluate their com-
bined influence on survey continuation. To keep thesemod-
els simple, we only included variables that were significantly
related to survey continuation in all 4 univariate analyses
(2 discontinuation thresholds and 2 data sets). This approach
is perhaps overly conservative with respect to variable selec-
tion, but our primary goal was to examine the magnitude
of effects of individual variables, not necessarily to identify
the best overall model. We used calculations of logit prob-
abilities to estimate the effect size of each variable, and used
McFadden’s pseudo-R2 to evaluate model fit (McFadden
1974). Values of pseudo-R2 > ∼0.20 represent a good model
fit (McFadden 1974).

We also hypothesized that survey discontinuation might
be influenced by the relative number of frogs detected on any

Figure 1. Scatterplot for the relationship between observed anuran species richness and number of times each route was surveyed.
Richness values (y-axis) show residual richness after net primary productivity (NPP) was accounted for, which represents the number
of species observed relative to the number expected based on NPP. The vertical line shows 3 y of surveys, after which the relationship
between species detected and survey number was less pronounced.
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particular route. Specifically, when volunteers detect fewer
frog calls in their initial surveys, theymight be less interested
in continuing their routes in subsequent years. To evaluate
this possibility, we created a 3rd data set by extracting data
from the 1st year of surveys for a subset of states: FL, MO,
VA, VT, and WV. These states were chosen because they
spanned the different regions and included both continued
and discontinued routes. For each route we calculated the
total number of frog detections recorded per survey, irre-
spective of species. We then asked whether the number of
detections per survey was related to whether a survey route
was continued beyond the 1st year. We performed this anal-
ysis with and without covariates for route characteristics
(e.g., traffic volume, noise) that could have separately influ-
enced survey continuation.

Direct and indirect effects on route discontinuation
Weused a structural equationmodel (SEM) (Grace 2006,

Kline 2015) to further examine the effects of urbanization,
landcover, traffic, noise, and frog richness on survey contin-
uation. SEMs allow the use of latent variables to represent
theoretical constructs that are estimated by measured vari-
ables (Grace et al. 2010, Kline 2015). For example, we repre-
sented the latent variable ‘urbanization’ by 2 measured vari-
ables: proportion of developed land and total road length
within 1 km. Other latent variables in our model included
forest cover, traffic, noise, frog species richness, and route
discontinuation. In our study, each of these latent variables
was represented by single measured variables, but in princi-
ple additional measured variables might be related to these
latent variables.

SEMs are particularly useful for understanding systems
in which there is a network of direct and indirect effects. In
our system, route discontinuation could be directly related
to any of the latent variables in the model, but some path-
ways may be indirect. For example, urbanization could di-
rectly influence route discontinuation because urban areas
have a greater pool of potential volunteers to survey routes
(so that volunteers could be replaced without discontinu-
ing the route). Alternatively, urbanization could indirectly
affect the probability of route discontinuation by affecting
the amount of habitat in the landscape, the degree of traffic
and noise during surveys, or the number of frog species on a
route. We used the lavaan package in R (R Core Develop-
ment Team 2016) to fit the SEM with diagonally weighted
least squares estimation and robust standard errors (Rosseel
2012). Traffic volume and road lengthwere divided by a con-
stant to put them on a similar scale to other variables (Ros-
seel 2012). We used standardized regression coefficients to
compare the strength and significance of pathways in the
model. We assessed model fit with a v2 test and root mean
square error of approximation (RMSEA). Good model fit is
indicated by p >0.05 and RMSEA <0.05 (Kline 2015). We fit
the SEM to the non-nested data set rather than the nested

data set because the non-nested data set included ∼30%
more routes.

Effects of route discontinuation on observed patterns
in NAAMP data

To assess if route discontinuation affected patterns in
NAAMP data, we conducted 2 sets of analyses. First, we ex-
amined the statistical distribution of important explanatory
variables when we included all survey routes vs when we
restricted data to routes with ≥3 y of surveys (i.e., routes that
were included in Cosentino et al. 2014 andMarsh et al. 2017).
In particular, we wanted to know whether highly urbanized
sites were being lost because volunteers assigned these sites
were less likely to keep surveying them. For this analysis, we
compared the frequency of high end values (i.e., traffic vol-
ume >5.0 cars/survey, noise level >0.5, forest cover <10%)
for explanatory variables in the full sample of routes to fre-
quencies of these values in the sample of routes surveyed
for at least 3 y. Second, we examined how removal of routes
with only 1 or 2 y of data changed the observed correlations
between landscape variables and observed species richness.
That is, we asked to what extent route discontinuation ap-
peared to alter the basic patterns observed in the data. All
analyses were performed in R (version 3.3: R Project for Sta-
tistical Computing, Vienna, Austria) and raw data are avail-
able as Supplemental Materials.

RESULTS
Univariate relationships with survey discontinuation
Nested data Region, forest cover, wetland area, traffic vol-
ume, and noise level eachwas associated with the probability
that a route would be discontinued after a single year (Ta-
ble 1). The discontinuation probability for sites in the north-
ern region was 8%, compared with 22% in the southern re-
gion. High forest cover was negatively associated with the
probability of survey discontinuation, whereas high wetland
area, traffic volume, and noise level were positively associated
with survey discontinuation (Fig. S1). These associations were
generally weak, and comparison of predicted discontinua-
tion rates at 25th percentile values for each individual vari-
able vs 75th percentile values yielded increases of only 2 to
5% in absolute probability of route discontinuation (Table 1).
However, models predicted very high discontinuation prob-
abilities near the maximum observed values for traffic vol-
ume (60%) and noise level (49%).

Results based on survey discontinuation after 2 y were
similar to the results after 1 y (Fig. S2). Again, discontinua-
tionwasmore likely in the southern region (48 vs 25% in the
northern region), andwasmore likely at sites with low forest
cover, high wetland area, high traffic volume, and high noise
(Table 1). In this data set, developed land cover was also as-
sociated with a higher probability of route discontinuation.
For these models, increases in variable values from the 25th
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to the 75th percentile were associatedwith absolute increases
in discontinuation probabilities of 4 to 14%.

Non-nested data When routes were categorized based on
whether or not they were surveyed for >1 y, the discontinu-
ation probability in the South (22%)was substantially higher

than in the Midwest (5%) or North (6%). Forest cover was
negatively associated with route discontinuation, whereas
traffic volume and noise were positively associated with the
probability that a route would be discontinued (Fig. S3; Ta-
ble 1). However, neither wetland area nor developed cover
was a significant predictor of route continuation in the 2014

Table 1. Results from univariate logistic regressions of probability of discontinuing surveys on site characteristics. Results are shown
for samples analyzed for 2 data sets with 2 different cut-offs for classifying survey routes as ‘continued’ (either surveyed >1 or >2 y).
For each model, we show the regression coefficient and its standard error (SE) for each association with route discontinuation. When
parameters differ significantly from 0 (shown in bold), we also give the predicted probability of a volunteer discontinuing their route
at the 25th, 75th, and maximum probability (max) percentile values for each variable. * indicates parameter for region in the nested
data represents the relative effect of being in the southern vs the northern USA; y indicates 2 parameters for region the non-nested data
represent the relative effects of being in the midwestern United States and the southern vs the northern USA.

Probability at different percentiles

Data set Threshold Variable beta SE p 25th 75th Max

Nested >1 y Region* 1.22 0.32 0.0001 NA NA NA

Nested >1 y Forest cover 22.66 0.68 9 � 1025 0.26 0.24 0.29

Nested >1 y Developed cover 0.44 1.22 0.72

Nested >1 y Agricultural cover 0.60 0.58 0.30

Nested >1 y Wetland area 6.2 � 1026 2.4 � 1027 0.01 0.12 0.16 0.44

Nested >1 y Road density 21.1 � 1025 3.7 � 1025 0.76

Nested >1 y Traffic volume 0.065 0.022 0.003 0.11 0.13 0.60

Nested >1 y Noise Level 2.06 0.60 0.0005 0.11 0.16 0.49

Nested >2 y Region* 1.01 0.22 4 � 1026 NA NA NA

Nested >2 y Forest cover 21.64 0.45 0.0003 0.41 0.27 0.47

Nested >2 y Developed cover 2.29 0.94 0.02 0.33 0.37 0.75

Nested >2 y Agricultural cover 0.037 0.44 0.93

Nested >2 y Wetland area 5.0 � 1027 2.0 � 1027 0.01 0.33 0.39 0.69

Nested >2 y Road density 3.4 � 1025 2.6 � 1025 0.19

Nested >2 y Traffic volume 0.056 0.021 0.006 0.30 0.34 0.69

Nested >2 y Noise Level 1.59 0.52 0.002 0.32 0.40 0.69

Non-nested >1 y Regiony 20.02/1.63 0.45/0.35 0.97/2 � 1026 NA NA NA

Non-nested >1 y Forest cover 21.26 0.53 0.02 0.14 0.04 0.16

Non-nested >1 y Developed cover 21.07 1.89 0.57

Non-nested >1 y Agricultural cover 20.21 0.56 0.56

Non-nested >1 y Wetland cover 0.94 0.66 0.66

Non-nested >1 y Road density 23.3 � 1026 2.5 � 1025 0.89

Non-nested >1 y Traffic volume 0.07 0.02 0.001 0.08 0.10 0.66

Non-nested >1 y Noise Level 1.72 0.44 0.0001 0.08 0.11 0.33

Non-nested >2 y Regiony 0.36/1.68 0.31/0.27 0.25/3 � 10210 NA NA NA

Non-nested >2 y Forest cover 20.99 0.40 0.01 0.25 0.17 0.27

Non-nested >2 y Developed cover 1.24 1.10 0.26

Non-nested >2 y Agricultural cover 20.30 0.43 0.49

Non-nested >2 y Wetland cover 0.15 0.57 0.79

Non-nested >2 y Road density 2.5 � 1025 1.7 � 1025 0.15

Non-nested >2 y Traffic volume 0.08 0.20 0.0001 0.16 0.19 0.85

Non-nested >2 y Noise Level 1.89 0.38 8 � 1027 0.16 0.21 0.56
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sample. Increasing variable values from their 25th to 75th per-
centiles resulted in a 2 to 10% change in the probability of
route discontinuation.

Categorizing routes based on completion of >2 y of sur-
veys produced similar results (Fig. S4). Discontinuation rates
were higher in the South and at sites with low forest cover,
high traffic volume, and high noise (Table 1). Increasing var-
iable values from their 25th to their 75th percentiles resulted
in a 3 to 8% change in the probability of route discontinua-
tion. However, the maximum values for traffic volume and
noise levels were associatedwith high discontinuation prob-
abilities (up to 85%).

Multivariate analysis of route discontinuation
In the univariate analyses for the nested and non-nested

data sets, region, forest cover, traffic volume, and noise level
were all consistently related to the probability of survey dis-
continuation. Thus, we included these 4 explanatory vari-
ables in themultivariate logistic regressionmodels presented
below, with the proviso that correlations exist among the
predictor variables. Traffic volume and noise level were
moderately correlated with each other (r 5 0.57), whereas
the correlations between forest cover and other predictor
variables were lower (r 5 –0.06 for traffic volume and r 5
–0.11 for noise level).

For the nested data, the multivariate model predicted
higher discontinuation rates after 1 year for routes in the
South, for routes with low forest cover, and for routes with
high traffic volume, and high noise levels (Table S1). The
multivariate model predicted discontinuation probabilities
as low as 3% for sites in the North (where discontinuation
probability was lower) with high forest cover (75th percen-
tile), and low (25th percentile) traffic volume and road noise,
and as high as 22% for sites in the South (where discontin-
uation probability was higher) with low (25th percentile) for-
est cover and high (75th percentile) traffic and noise levels.
McFadden’s pseudo-R2 for this model was 0.27, indicating
a good fit to the data. The multivariate model for discontin-
uing surveys before 3 y was very similar (Table S2). Sites in
the North with high (75th percentile) forest cover and low
(25th percentile) traffic and noise were predicted to have a
discontinuation probability of 16%, whereas sites in the South
with the low forest cover (25th percentile) and high (75th per-
centile) traffic and noise were predicted to have a 48% dis-
continuation probability. McFadden’s pseudo-R2 for this
model was 0.19.

For the non-nested data set, routes in the South had an
increased probability of discontinuation after 1 y compared
to routes in the Midwest or North. Routes with less forest
cover also had lower probabilities of route continuation.
Noise levelwas significantly related todiscontinuationprob-
ability, but traffic volume was not a significant predictor of
discontinuation when noise level was included in the model
(Table S3). Predicted discontinuation probability was only

2% for routes in the North with high (75th percentile) for-
est cover, and low (25th percentile) traffic and noise, but in-
creased to 25% for sites in the South with low (25th per-
centile) forest cover, and high (75th percentile) traffic and
noise. The model for discontinuation before 3 y was very
similar, once again with significant effects of region, forest
cover, and noise level, but not traffic volume (Table S4). Pre-
dicted discontinuation probability from this model was 5%
for routes in the North with high (75th percentile) forest
cover and low (25th percentile) traffic and noise and 46%
for Southern routes with low (25th percentile) forest cover
and high (75th percentile) traffic and noise. Traffic volume
and noise were moderately correlated within the data set
(r5 0.61), and both variables were weakly negatively corre-
lated with forest cover (r5 –0.12 for traffic volume and r5
–0.17 for noise). McFadden’s pseudo-R2 for models using
both threshold criteria with the non-nested data was 0.24.

Effects of detection frequency
We hypothesized that the number of frog and toad de-

tections in the 1st year of surveys would influence whether
a volunteer would continue with their surveys. For a model
that included only a categorical variable for state and initial
detection frequency, fewer detections was associated with
an increased probability of route discontinuation (b520.22,
p 5 0.01). A change in the number of detections in the
25th percentile value (4.17) to the 75th percentile value
(9.17) resulted in an increase in the predicted probability of
discontinuing a survey from 18% to 29%. For a model that
included state as a categorical variable and forest cover and
noise level as covariates, detection frequency was again a sig-
nificant predictor of route discontinuation (b520.23, p 5
0.01). In this model, predicted survey discontinuation went
from 10% for sites with high (75th percentile) initial detec-
tion frequency, and median forest cover and noise to 32% for
sites with few initial detections (25th percentile) and median
forest cover and noise. Anecdotally, there were 7 routes in
our data set that produced ≤1 average detections per survey
in the 1st year.Of these 7 routes, 6 of them (84%)were not re-
surveyed in the following year (compared to 22% overall).

Structural equation model
Results of the SEM (Fig. 2) largely agreed with the mul-

tivariate logistic regression for each data set. The model
identified direct effects of forest cover and noise level on
the probability of survey discontinuation, but not traffic vol-
ume. Additionally, the model identified species richness as
an additional influence on survey continuation, such that
sites with more frog species were more likely to be resur-
veyed in subsequent years.

Effects on variable distributions
One potential effect of non-random survey discontinu-

ation is loss of highly disturbed or urbanized sites from the
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sample. Comparison of variable distributions for forest cover,
traffic volume and noise all showed fewer extreme values
when sites surveyed<3 ywere excluded, thoughnone of these
differences were statistically significant. For forest cover,
routes with <10% forest cover represented 20.1% of the full
sample vs 19.1% of the sample of routes surveyed for ≥3 y
(Fisher’s exact test, p 5 0.75). For traffic, routes with mean
car count >5 represented 12.0% of the full sample but 8.7%
of the sample of routes surveyed ≥3 y (p5 0.10). Finally, for
noise level, sites with noise frequency of >0.5 represented
8.5% of the full sample, but 6.0% of the routes surveyed
for ≥3 y (p 5 0.15).

Effects of survey discontinuation on observed patterns
in NAAMP data

Correlations between site characteristics and species
richness were reduced in 5 out of 6 cases in which discon-
tinued sites were excluded (Table 2). However, in all of these
cases the 95% confidence intervals for correlation coeffi-
cients overlapped between the data sets (Table 2).

DISCUSSION
We found substantial evidence that discontinuation of

NAAMP survey routes was non-random, and instead de-
pended on survey site characteristics. In particular, sites with
low forest cover, high vehicle traffic, and high noise levels
were consistently associated with increased probabilities of
survey discontinuation after 1 or 2 y. Further, our SEM anal-

ysis suggested that the correlated effects of traffic and noise
on route discontinuation were probably associated with noise
levels, whereas the effect of low forest cover appeared to be an
independent of other variables. In addition, separate analyses

Figure 2. Results from a structural equation model (SEM) for route discontinuation within the North American Amphibian Monitoring
Program. Measured variables are contained within boxes, whereas latent variables are shown within ellipses. Arrow thickness is proportional
to SEM coefficient. Solid arrows indicate coefficients with 95% percent confidence intervals that differ from zero, whereas dashed arrows
indicate coefficients with 95% confidence intervals that include zero. R2-values show the proportion of variation explained for each variable.
Model fit for the SEM was good (v2 5 6.57, df 5 6, p 5 0.36; RMSEA 5 0.01).

Table 2. Changes in correlations between landscape variables
and species richness when discontinued routes are included
(full) or excluded (≥3 y) from both the nested and the non-
nested data sets. Species richness is estimated as the residual of
the regression of raw richness on number of surveys in order
to account for variation in survey effort. Results show that
correlations between landscape variables and richness generally
decreased when discontinued routes were excluded.

Data set Variable
Correlation with
rich ness (95% CI)

Nested, full Forest cover 0.03 (20.07 to 0.13)

Nested, ≥3 y Forest cover 20.08 (20.20 to 0.05)

Nested, full Traffic volume 20.24 (20.33 to 20.14)

Nested, ≥3 y Traffic volume 20.20 (20.20 to 20.07)

Nested, full Noise Level 20.22 (20.32 to 20.13)

Nested, ≥3 y Noise Level 20.15 (20.27 to 20.03)

Non-nested, full Forest cover 0.06 (20.03 to 0.14)

Non-nested, ≥3 y Forest cover 0.01 (20.08 to 0.11)

Non-nested, full Traffic volume 20.21 (20.29 to 20.13)

Non-nested, ≥3 y Traffic volume 20.09 (20.18 to 20.01)

Non-nested, full Noise Level 20.24 (20.31 to 20.16)

Non-nested, ≥3 y Noise Level 20.13 (20.22 to 20.04)
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found that route discontinuation was more likely when fewer
total amphibians were detected and when observed species
richness was lower. The absolute change in discontinuation
probability was often low (e.g., 2–10%) over the mid-range
values for site variables (e.g., 25th to 75th percentile values).
However, at more extreme values for some variables, such
as very high traffic or very few amphibians detected, the pre-
dicted probability that a survey site would be discontinued
could be 50 to 85%.

The non-randomdrop-outs that we observed had several
apparent effects on NAAMP data. First, these drop-outs led
to an under-representation of highly urbanized sites in our
sample. The effect sizes of these drop-outs were usually
small, butNAAMPsurveys beganwith fewhighly urbanized
survey routes, and these drop-outs made it even more diffi-
cult to evaluate the effects of urbanization (Cosentino et al.
2014). A second effect of drop-outs was their influence on
observed relationships between site characteristics and am-
phibian species richness in our sample. In most cases, cor-
relations between site characteristics and amphibian rich-
ness decreased when we restricted analysis to sites with
≥3 y of data, as we did in our previous analyses of NAAMP
data (Cosentino et al. 2014,Marsh et al. 2017). Reduced cor-
relations among these variables are expected because sites
withhigh levelsof trafficandnoise, andwith lowlevelsof am-
phibian richness, would have fewer surveys and, therefore,
be more likely to be excluded. These reductions in correla-
tionwouldoccur regardlessofwhether the lowrecordedam-
phibian richness is real or a result of reduced detection caused
by noise. In some cases, correlations did switch from being
‘significant’ (i.e., confidence limits not over-lapping zero) to
being ‘non-significant’ (i.e., confidence limits overlapping
with zero) when sites with few surveys were excluded, al-
though the reductions in correlation coefficients always fell
within the 95% confidence limits for these parameters.

We found a clear effect of noise and forest cover, but it
seems likely that the influential factors would differ from
one project to another. Few other studies have investigated
the specific factors that influence drop-outs from citizen sci-
ence projects (but see Tulloch and Szabo 2012). With road-
side amphibian call surveys, volunteers may find heavily-
trafficked and noisy survey routes less appealing. However,
for other types of surveys (e.g., water quality), easily accessi-
ble (i.e., less remote) areas might be preferred for collecting
data (Tulloch and Szabo 2012).

Our finding with respect to number of amphibian detec-
tions and species richness could indicate a more general
problem. That is, for surveys of animals and plants, volun-
teer retentionmay consistently be a challenge when the tar-
get species are frequently undetected. If so, this would be
a potentially important problem because accurately model-
ing species distributions requires substantial data on ab-
sence as well as presence. In addition, if low abundance sites
are avoided by volunteers, citizen science studies may miss
changes in populations at these sites. For citizen science stud-

ies of water quality, it is not obvious (to us, anyway) whether
volunteers would tend to prefer sites that appear pristine and,
therefore, safe to visit, or sites that appear highly polluted
and, therefore, worthy of concern. Further studies of this
issue would allow for a better understanding of the biases
associated with volunteer water sampling and the actions
needed to correct for them. In some cases, data may already
exist to carry out these kinds of analyses.

When biases in drop-outs are apparent in citizen science
projects, several actions can be taken to mitigate the issue.
First, volunteer education can highlight the importance of
monitoring undesirable sites.Most volunteers in citizen sci-
ence projects value their contribution to the larger scientific
enterprise, so convincing them of the importance of moni-
toring highly urbanized sites or siteswhere a target species is
absent could increase volunteer retention. Providing volun-
teers with maps that identify under-sampled locations may
also help fill in the gaps. Second, stratification in the ran-
domization procedure can ensure adequate representation
of sites that might otherwise be under-represented (Tulloch
and Szabo 2012). If a citizen science project aims to investi-
gate the effects of urbanization or pollution, it may be nec-
essary to specifically assign more volunteers urbanized or
polluted sites to account for drop-outs. NAAMP was not
designed with the specific goal of understanding the effects
of urbanization, but our own studies were limited by the small
number of highly urbanized routes in our samples. Under-
representation of high-end values for urbanization may be
particularly important if species exhibit threshold responses
to urbanization, such that responses occur only at high lev-
els of habitat loss (With and Crist 1995, Radford et al. 2005).
Third, where citizen science surveys are conducted in co-
operation with local or state agencies and/or NGOs, these
organizations could potentially step in to replace surveys lost
to drop-outs. More generally, coordination between citizen
science projects and agencies with full-time employees can
help to increase data quality and survey reliability.

The presence of non-randomdrop-outs in citizen-science
data provides an additional argument in support of explic-
itly modeling the data collection process along with the
biological variables of interest (Royle 2004, Royle and Link
2005). When species detection by observers is modeled in
conjunction with presence/absence, fewer situations may
arise where survey effort is confounded with other variables
of interest. Unfortunately,modeling probability of detection
along with occupancy is not always possible because data
may be sparse or collected using varied approaches. In our
own analyses of NAAMP data, large sections of missing data
and different survey years in different states made it difficult
for us to fit species occupancy models that take detection
into account (Cosentino et al. 2014). Furthermore, modeling
the detection process as part of species richness estimation
is frequently a challenging problem (Mao and Colwell 2005,
Dorazio et al. 2006). For citizen science projects that rely
on species richness (e.g., stream invertebrates) to assess hab-
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itat quality, many analyses will continue to make use of
summary measures that can mask biases in data collection
by volunteers.

The data we compiled to analyze NAAMP surveys were
not originally designed to examine the issue of volunteer re-
tention. As a result, our analyses for this paper are largely
phenomenological, and rely on general patterns in the data
(e.g., associations between land use variables and survey num-
bers) tomake inferences about volunteer behavior. On some
NAAMP routes that appeared to be continuouslymonitored
over time, observers might actually have discontinued their
participation and been replaced with new volunteers before
the next set of surveys. In other cases, volunteers might have
been reassigned to new NAAMP routes for reasons unre-
lated to the routes themselves. Thus, our analyses can pro-
vide only indirect evidence of non-random drop-outs from
NAAMP. Future studies of volunteer behavior within citi-
zen science projects would benefit from explicitly analyzing
how volunteers respond to characteristics of their survey
sites and the data they collect on a year-to-year basis. In ad-
dition, surveys of current and former volunteers could be
used to enquire specifically about the factors that promote
continued participation in the project.

There is a growing need to understand how to analyze the
data citizen science projects produce as they become an in-
creasingly common approach to collecting environmental
data (Dickinson et al. 2010, Tulloch et al. 2013). Much as
political polling relies on detailed studies of response rates
among different demographic groups, accurate estimation
from citizen science data requires an understanding of the
factors that influence data collection by volunteers. Fortu-
nately, common biases in citizen science data can poten-
tially be corrected for once they are understood (Bird et al.
2014). We hope our study will motivate other researchers
to examine volunteer behavior in the context of major citi-
zen science initiatives, thereby improving the capacity of cit-
izen science to address critical environmental issues.
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